adding enhancement training

This commit is contained in:
vahidrezanezhad 2024-05-06 18:31:48 +02:00
parent dbb84507ed
commit 38db3e9289
5 changed files with 119 additions and 68 deletions

View file

@ -268,7 +268,7 @@ def IoU(Yi, y_predi):
return mIoU
def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_classes):
def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_classes, task='segmentation'):
c = 0
n = [f for f in os.listdir(img_folder) if not f.startswith('.')] # os.listdir(img_folder) #List of training images
random.shuffle(n)
@ -277,8 +277,6 @@ def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_c
mask = np.zeros((batch_size, input_height, input_width, n_classes)).astype('float')
for i in range(c, c + batch_size): # initially from 0 to 16, c = 0.
# print(img_folder+'/'+n[i])
try:
filename = n[i].split('.')[0]
@ -287,11 +285,14 @@ def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_c
interpolation=cv2.INTER_NEAREST) # Read an image from folder and resize
img[i - c] = train_img # add to array - img[0], img[1], and so on.
train_mask = cv2.imread(mask_folder + '/' + filename + '.png')
# print(mask_folder+'/'+filename+'.png')
# print(train_mask.shape)
train_mask = get_one_hot(resize_image(train_mask, input_height, input_width), input_height, input_width,
n_classes)
if task == "segmentation":
train_mask = cv2.imread(mask_folder + '/' + filename + '.png')
train_mask = get_one_hot(resize_image(train_mask, input_height, input_width), input_height, input_width,
n_classes)
elif task == "enhancement":
train_mask = cv2.imread(mask_folder + '/' + filename + '.png')/255.
train_mask = resize_image(train_mask, input_height, input_width)
# train_mask = train_mask.reshape(224, 224, 1) # Add extra dimension for parity with train_img size [512 * 512 * 3]
mask[i - c] = train_mask
@ -539,14 +540,19 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
padding_white, padding_black, flip_aug, binarization, scaling, degrading,
brightening, scales, degrade_scales, brightness, flip_index,
scaling_bluring, scaling_brightness, scaling_binarization, rotation,
rotation_not_90, thetha, scaling_flip, augmentation=False, patches=False):
rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=False):
indexer = 0
for im, seg_i in tqdm(zip(imgs_list_train, segs_list_train)):
img_name = im.split('.')[0]
if task == "segmentation":
dir_of_label_file = os.path.join(dir_seg, img_name + '.png')
elif task=="enhancement":
dir_of_label_file = os.path.join(dir_seg, im)
if not patches:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png', resize_image(cv2.imread(dir_img + '/' + im), input_height, input_width))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png', resize_image(cv2.imread(dir_seg + '/' + img_name + '.png'), input_height, input_width))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png', resize_image(cv2.imread(dir_of_label_file), input_height, input_width))
indexer += 1
if augmentation:
@ -556,7 +562,7 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
resize_image(cv2.flip(cv2.imread(dir_img+'/'+im),f_i),input_height,input_width) )
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.flip(cv2.imread(dir_seg + '/' + img_name + '.png'), f_i), input_height, input_width))
resize_image(cv2.flip(cv2.imread(dir_of_label_file), f_i), input_height, input_width))
indexer += 1
if blur_aug:
@ -565,7 +571,7 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
(resize_image(bluring(cv2.imread(dir_img + '/' + im), blur_i), input_height, input_width)))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_seg + '/' + img_name + '.png'), input_height, input_width))
resize_image(cv2.imread(dir_of_label_file), input_height, input_width))
indexer += 1
if binarization:
@ -573,26 +579,26 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
resize_image(otsu_copy(cv2.imread(dir_img + '/' + im)), input_height, input_width))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_seg + '/' + img_name + '.png'), input_height, input_width))
resize_image(cv2.imread(dir_of_label_file), input_height, input_width))
indexer += 1
if patches:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
cv2.imread(dir_img + '/' + im), cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_img + '/' + im), cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer)
if augmentation:
if rotation:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
rotation_90(cv2.imread(dir_img + '/' + im)),
rotation_90(cv2.imread(dir_seg + '/' + img_name + '.png')),
rotation_90(cv2.imread(dir_of_label_file)),
input_height, input_width, indexer=indexer)
if rotation_not_90:
for thetha_i in thetha:
img_max_rotated, label_max_rotated = rotation_not_90_func(cv2.imread(dir_img + '/'+im),
cv2.imread(dir_seg + '/'+img_name + '.png'), thetha_i)
cv2.imread(dir_of_label_file), thetha_i)
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
img_max_rotated,
label_max_rotated,
@ -601,24 +607,24 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
for f_i in flip_index:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
cv2.flip(cv2.imread(dir_img + '/' + im), f_i),
cv2.flip(cv2.imread(dir_seg + '/' + img_name + '.png'), f_i),
cv2.flip(cv2.imread(dir_of_label_file), f_i),
input_height, input_width, indexer=indexer)
if blur_aug:
for blur_i in blur_k:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
bluring(cv2.imread(dir_img + '/' + im), blur_i),
cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer)
if padding_black:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
do_padding_black(cv2.imread(dir_img + '/' + im)),
do_padding_label(cv2.imread(dir_seg + '/' + img_name + '.png')),
do_padding_label(cv2.imread(dir_of_label_file)),
input_height, input_width, indexer=indexer)
if padding_white:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
do_padding_white(cv2.imread(dir_img + '/'+im)),
do_padding_label(cv2.imread(dir_seg + '/' + img_name + '.png')),
do_padding_label(cv2.imread(dir_of_label_file)),
input_height, input_width, indexer=indexer)
if brightening:
@ -626,7 +632,7 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
try:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
do_brightening(dir_img + '/' +im, factor),
cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer)
except:
pass
@ -634,20 +640,20 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
for sc_ind in scales:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
cv2.imread(dir_img + '/' + im) ,
cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer, scaler=sc_ind)
if degrading:
for degrade_scale_ind in degrade_scales:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
do_degrading(cv2.imread(dir_img + '/' + im), degrade_scale_ind),
cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer)
if binarization:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
otsu_copy(cv2.imread(dir_img + '/' + im)),
cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer)
if scaling_brightness:
@ -657,7 +663,7 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
indexer = get_patches_num_scale_new(dir_flow_train_imgs,
dir_flow_train_labels,
do_brightening(dir_img + '/' + im, factor)
,cv2.imread(dir_seg + '/' + img_name + '.png')
,cv2.imread(dir_of_label_file)
,input_height, input_width, indexer=indexer, scaler=sc_ind)
except:
pass
@ -667,14 +673,14 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
for blur_i in blur_k:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
bluring(cv2.imread(dir_img + '/' + im), blur_i),
cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer, scaler=sc_ind)
if scaling_binarization:
for sc_ind in scales:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
otsu_copy(cv2.imread(dir_img + '/' + im)),
cv2.imread(dir_seg + '/' + img_name + '.png'),
cv2.imread(dir_of_label_file),
input_height, input_width, indexer=indexer, scaler=sc_ind)
if scaling_flip:
@ -682,5 +688,5 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
for f_i in flip_index:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
cv2.flip( cv2.imread(dir_img + '/' + im), f_i),
cv2.flip(cv2.imread(dir_seg + '/' + img_name + '.png'), f_i),
cv2.flip(cv2.imread(dir_of_label_file), f_i),
input_height, input_width, indexer=indexer, scaler=sc_ind)