mirror of
https://github.com/qurator-spk/sbb_pixelwise_segmentation.git
synced 2025-06-30 22:20:02 +02:00
continue training, losses and etc
This commit is contained in:
parent
5fb7552dbe
commit
4bea9fd535
3 changed files with 69 additions and 24 deletions
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"n_classes" : 3,
|
||||
"n_epochs" : 1,
|
||||
"n_epochs" : 2,
|
||||
"input_height" : 448,
|
||||
"input_width" : 672,
|
||||
"weight_decay" : 1e-6,
|
||||
|
@ -8,16 +8,22 @@
|
|||
"learning_rate": 1e-4,
|
||||
"patches" : true,
|
||||
"pretraining" : true,
|
||||
"augmentation" : true,
|
||||
"augmentation" : false,
|
||||
"flip_aug" : false,
|
||||
"blur_aug" : true,
|
||||
"scaling" : false,
|
||||
"blur_aug" : false,
|
||||
"scaling" : true,
|
||||
"binarization" : false,
|
||||
"scaling_bluring" : false,
|
||||
"scaling_binarization" : false,
|
||||
"scaling_flip" : false,
|
||||
"rotation": false,
|
||||
"rotation_not_90": false,
|
||||
"continue_training": false,
|
||||
"index_start": 0,
|
||||
"dir_of_start_model": " ",
|
||||
"weighted_loss": false,
|
||||
"is_loss_soft_dice": false,
|
||||
"data_is_provided": false,
|
||||
"dir_train": "/home/vahid/Documents/handwrittens_train/train",
|
||||
"dir_eval": "/home/vahid/Documents/handwrittens_train/eval",
|
||||
"dir_output": "/home/vahid/Documents/handwrittens_train/output"
|
||||
|
|
77
train.py
77
train.py
|
@ -9,6 +9,7 @@ from models import *
|
|||
from utils import *
|
||||
from metrics import *
|
||||
from keras.models import load_model
|
||||
from tqdm import tqdm
|
||||
|
||||
def configuration():
|
||||
keras.backend.clear_session()
|
||||
|
@ -61,19 +62,24 @@ def config_params():
|
|||
blur_k=['blur','guass','median'] # Used in order to blur image. Used for augmentation.
|
||||
scales= [ 0.5, 2 ] # Scale patches with these scales. Used for augmentation.
|
||||
flip_index=[0,1,-1] # Flip image. Used for augmentation.
|
||||
|
||||
continue_training = False # If
|
||||
index_start = 0
|
||||
dir_of_start_model = ''
|
||||
is_loss_soft_dice = False
|
||||
weighted_loss = False
|
||||
data_is_provided = False
|
||||
|
||||
@ex.automain
|
||||
def run(n_classes,n_epochs,input_height,
|
||||
input_width,weight_decay,
|
||||
input_width,weight_decay,weighted_loss,
|
||||
index_start,dir_of_start_model,is_loss_soft_dice,
|
||||
n_batch,patches,augmentation,flip_aug
|
||||
,blur_aug,scaling, binarization,
|
||||
blur_k,scales,dir_train,
|
||||
blur_k,scales,dir_train,data_is_provided,
|
||||
scaling_bluring,scaling_binarization,rotation,
|
||||
rotation_not_90,thetha,scaling_flip,
|
||||
rotation_not_90,thetha,scaling_flip,continue_training,
|
||||
flip_index,dir_eval ,dir_output,pretraining,learning_rate):
|
||||
|
||||
data_is_provided = False
|
||||
|
||||
if data_is_provided:
|
||||
dir_train_flowing=os.path.join(dir_output,'train')
|
||||
|
@ -143,12 +149,43 @@ def run(n_classes,n_epochs,input_height,
|
|||
augmentation=False,patches=patches)
|
||||
|
||||
|
||||
continue_train = False
|
||||
|
||||
if weighted_loss:
|
||||
weights=np.zeros(n_classes)
|
||||
if data_is_provided:
|
||||
for obj in os.listdir(dir_flow_train_labels):
|
||||
try:
|
||||
label_obj=cv2.imread(dir_flow_train_labels+'/'+obj)
|
||||
label_obj_one_hot=get_one_hot( label_obj,label_obj.shape[0],label_obj.shape[1],n_classes)
|
||||
weights+=(label_obj_one_hot.sum(axis=0)).sum(axis=0)
|
||||
except:
|
||||
pass
|
||||
else:
|
||||
|
||||
for obj in os.listdir(dir_seg):
|
||||
try:
|
||||
label_obj=cv2.imread(dir_seg+'/'+obj)
|
||||
label_obj_one_hot=get_one_hot( label_obj,label_obj.shape[0],label_obj.shape[1],n_classes)
|
||||
weights+=(label_obj_one_hot.sum(axis=0)).sum(axis=0)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
if continue_train:
|
||||
model_dir_start = '/home/vahid/Documents/struktur_full_data/output_multi/model_0.h5'
|
||||
model = load_model (model_dir_start, compile = True, custom_objects={'soft_dice_loss': soft_dice_loss})
|
||||
index_start = 1
|
||||
weights=1.00/weights
|
||||
|
||||
weights=weights/float(np.sum(weights))
|
||||
weights=weights/float(np.min(weights))
|
||||
weights=weights/float(np.sum(weights))
|
||||
|
||||
|
||||
|
||||
if continue_training:
|
||||
if is_loss_soft_dice:
|
||||
model = load_model (dir_of_start_model, compile = True, custom_objects={'soft_dice_loss': soft_dice_loss})
|
||||
if weighted_loss:
|
||||
model = load_model (dir_of_start_model, compile = True, custom_objects={'loss': weighted_categorical_crossentropy(weights)})
|
||||
if not is_loss_soft_dice and not weighted_loss:
|
||||
model = load_model (dir_of_start_model, compile = True)
|
||||
else:
|
||||
#get our model.
|
||||
index_start = 0
|
||||
|
@ -158,12 +195,16 @@ def run(n_classes,n_epochs,input_height,
|
|||
#model.summary()
|
||||
|
||||
|
||||
if not is_loss_soft_dice and not weighted_loss:
|
||||
model.compile(loss='categorical_crossentropy',
|
||||
optimizer = Adam(lr=learning_rate),metrics=['accuracy'])
|
||||
if is_loss_soft_dice:
|
||||
model.compile(loss=soft_dice_loss,
|
||||
optimizer = Adam(lr=learning_rate),metrics=['accuracy'])
|
||||
|
||||
#model.compile(loss='categorical_crossentropy',
|
||||
#optimizer = Adam(lr=learning_rate),metrics=['accuracy'])
|
||||
|
||||
model.compile(loss=soft_dice_loss,
|
||||
optimizer = Adam(lr=learning_rate),metrics=['accuracy'])
|
||||
if weighted_loss:
|
||||
model.compile(loss=weighted_categorical_crossentropy(weights),
|
||||
optimizer = Adam(lr=learning_rate),metrics=['accuracy'])
|
||||
|
||||
#generating train and evaluation data
|
||||
train_gen = data_gen(dir_flow_train_imgs,dir_flow_train_labels, batch_size = n_batch,
|
||||
|
@ -171,7 +212,7 @@ def run(n_classes,n_epochs,input_height,
|
|||
val_gen = data_gen(dir_flow_eval_imgs,dir_flow_eval_labels, batch_size = n_batch,
|
||||
input_height=input_height, input_width=input_width,n_classes=n_classes )
|
||||
|
||||
for i in range(index_start, n_epochs+index_start):
|
||||
for i in tqdm(range(index_start, n_epochs+index_start)):
|
||||
model.fit_generator(
|
||||
train_gen,
|
||||
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs))/n_batch)-1,
|
||||
|
@ -181,8 +222,8 @@ def run(n_classes,n_epochs,input_height,
|
|||
model.save(dir_output+'/'+'model_'+str(i)+'.h5')
|
||||
|
||||
|
||||
os.system('rm -rf '+dir_train_flowing)
|
||||
os.system('rm -rf '+dir_eval_flowing)
|
||||
#os.system('rm -rf '+dir_train_flowing)
|
||||
#os.system('rm -rf '+dir_eval_flowing)
|
||||
|
||||
#model.save(dir_output+'/'+'model'+'.h5')
|
||||
|
||||
|
|
2
utils.py
2
utils.py
|
@ -374,9 +374,7 @@ def provide_patches(dir_img,dir_seg,dir_flow_train_imgs,
|
|||
|
||||
indexer=0
|
||||
for im, seg_i in tqdm(zip(imgs_cv_train,segs_cv_train)):
|
||||
#print(im, seg_i)
|
||||
img_name=im.split('.')[0]
|
||||
print(img_name,'img_name')
|
||||
if not patches:
|
||||
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png', resize_image(cv2.imread(dir_img+'/'+im),input_height,input_width ) )
|
||||
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png' , resize_image(cv2.imread(dir_seg+'/'+img_name+'.png'),input_height,input_width ) )
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue