mirror of
https://github.com/qurator-spk/sbb_pixelwise_segmentation.git
synced 2025-06-09 03:40:24 +02:00
machine based reading order training is integrated
This commit is contained in:
parent
bf1468391a
commit
4e4490d740
3 changed files with 109 additions and 0 deletions
55
models.py
55
models.py
|
@ -544,4 +544,59 @@ def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=
|
|||
|
||||
|
||||
|
||||
return model
|
||||
|
||||
def machine_based_reading_order_model(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
|
||||
assert input_height%32 == 0
|
||||
assert input_width%32 == 0
|
||||
|
||||
img_input = Input(shape=(input_height,input_width , 3 ))
|
||||
|
||||
if IMAGE_ORDERING == 'channels_last':
|
||||
bn_axis = 3
|
||||
else:
|
||||
bn_axis = 1
|
||||
|
||||
x1 = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
||||
x1 = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x1)
|
||||
|
||||
x1 = BatchNormalization(axis=bn_axis, name='bn_conv1')(x1)
|
||||
x1 = Activation('relu')(x1)
|
||||
x1 = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x1)
|
||||
|
||||
x1 = conv_block(x1, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
||||
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='b')
|
||||
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='c')
|
||||
|
||||
x1 = conv_block(x1, 3, [128, 128, 512], stage=3, block='a')
|
||||
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='b')
|
||||
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='c')
|
||||
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='d')
|
||||
|
||||
x1 = conv_block(x1, 3, [256, 256, 1024], stage=4, block='a')
|
||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='b')
|
||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='c')
|
||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='d')
|
||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='e')
|
||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='f')
|
||||
|
||||
x1 = conv_block(x1, 3, [512, 512, 2048], stage=5, block='a')
|
||||
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='b')
|
||||
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='c')
|
||||
|
||||
if pretraining:
|
||||
Model(img_input , x1).load_weights(resnet50_Weights_path)
|
||||
|
||||
x1 = AveragePooling2D((7, 7), name='avg_pool1')(x1)
|
||||
flattened = Flatten()(x1)
|
||||
|
||||
o = Dense(256, activation='relu', name='fc512')(flattened)
|
||||
o=Dropout(0.2)(o)
|
||||
|
||||
o = Dense(256, activation='relu', name='fc512a')(o)
|
||||
o=Dropout(0.2)(o)
|
||||
|
||||
o = Dense(n_classes, activation='sigmoid', name='fc1000')(o)
|
||||
model = Model(img_input , o)
|
||||
|
||||
return model
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue