1
0
Fork 0
mirror of https://github.com/qurator-spk/sbb_pixelwise_segmentation.git synced 2025-07-29 04:10:00 +02:00

machine based reading order training is integrated

This commit is contained in:
vahidrezanezhad 2024-05-24 16:39:48 +02:00
parent bf1468391a
commit 4e4490d740
3 changed files with 109 additions and 0 deletions

View file

@ -313,4 +313,35 @@ def run(_config, n_classes, n_epochs, input_height,
with open(os.path.join( os.path.join(dir_output,'model_best'), "config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
elif task=='reading_order':
configuration()
model = machine_based_reading_order_model(n_classes,input_height,input_width,weight_decay,pretraining)
dir_flow_train_imgs = os.path.join(dir_train, 'images')
dir_flow_train_labels = os.path.join(dir_train, 'labels')
classes = os.listdir(dir_flow_train_labels)
num_rows =len(classes)
#ls_test = os.listdir(dir_flow_train_labels)
#f1score_tot = [0]
indexer_start = 0
opt = SGD(lr=0.01, momentum=0.9)
opt_adam = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(loss="binary_crossentropy",
optimizer = opt_adam,metrics=['accuracy'])
for i in range(n_epochs):
history = model.fit(generate_arrays_from_folder_reading_order(dir_flow_train_labels, dir_flow_train_imgs, n_batch, input_height, input_width, n_classes), steps_per_epoch=num_rows / n_batch, verbose=1)
model.save( os.path.join(dir_output,'model_'+str(i+indexer_start) ))
with open(os.path.join(os.path.join(dir_output,'model_'+str(i)),"config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
'''
if f1score>f1score_tot[0]:
f1score_tot[0] = f1score
model_dir = os.path.join(dir_out,'model_best')
model.save(model_dir)
'''