inference updated

pull/18/head
vahidrezanezhad 6 months ago
commit 5fbe941f53

@ -219,7 +219,7 @@ class sbb_predict:
added_image = cv2.addWeighted(img,0.5,output,0.1,0)
return added_image
return added_image, output
def predict(self):
self.start_new_session_and_model()
@ -444,7 +444,7 @@ class sbb_predict:
if img.shape[1] < self.img_width:
img = cv2.resize(img, (self.img_height, img.shape[0]), interpolation=cv2.INTER_NEAREST)
margin = int(0 * self.img_width)
margin = int(0.1 * self.img_width)
width_mid = self.img_width - 2 * margin
height_mid = self.img_height - 2 * margin
img = img / float(255.0)
@ -562,9 +562,10 @@ class sbb_predict:
print(self.save)
cv2.imwrite(self.save,res)
else:
img_seg_overlayed = self.visualize_model_output(res, self.img_org, self.task)
img_seg_overlayed, only_prediction = self.visualize_model_output(res, self.img_org, self.task)
if self.save:
cv2.imwrite(self.save,img_seg_overlayed)
cv2.imwrite('./layout.png', only_prediction)
if self.ground_truth:
gt_img=cv2.imread(self.ground_truth)

@ -599,12 +599,15 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
indexer += 1
if brightening:
for factor in brightness:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png',
(resize_image(do_brightening(dir_img + '/' +im, factor), input_height, input_width)))
try:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png',
(resize_image(do_brightening(dir_img + '/' +im, factor), input_height, input_width)))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_of_label_file), input_height, input_width))
indexer += 1
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_of_label_file), input_height, input_width))
indexer += 1
except:
pass
if binarization:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png',

Loading…
Cancel
Save