this enables to visualize reading order of textregions provided in page-xml files

unifying-training-models
vahidrezanezhad 3 weeks ago
parent bd4160408e
commit 822d9292de

@ -214,6 +214,73 @@ def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, i
cv2.imwrite(os.path.join(dir_out_modal_image,final_f_name+'.png' ), input_multi_visual_modal)
indexer = indexer+1
@main.command()
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-do",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
def visualize_reading_order(dir_xml, dir_out):
xml_files_ind = os.listdir(dir_xml)
indexer_start= 0#55166
#min_area = 0.0001
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
xml_file = os.path.join(dir_xml,ind_xml )
f_name = ind_xml.split('.')[0]
_, _, _, file_name, id_paragraph, id_header,co_text_paragraph,co_text_header,tot_region_ref,x_len, y_len,index_tot_regions,img_poly = read_xml(xml_file)
id_all_text = id_paragraph + id_header
co_text_all = co_text_paragraph + co_text_header
cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_all)
texts_corr_order_index = [int(index_tot_regions[tot_region_ref.index(i)]) for i in id_all_text ]
#texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
#cx_ordered = np.array(cx_main)[np.array(texts_corr_order_index)]
#cx_ordered = cx_ordered.astype(np.int32)
cx_ordered = [int(val) for (_, val) in sorted(zip(texts_corr_order_index, cx_main), key=lambda x: \
x[0], reverse=False)]
#cx_ordered = cx_ordered.astype(np.int32)
cy_ordered = [int(val) for (_, val) in sorted(zip(texts_corr_order_index, cy_main), key=lambda x: \
x[0], reverse=False)]
#cy_ordered = cy_ordered.astype(np.int32)
color = (0, 0, 255)
thickness = 20
img = np.zeros( (y_len,x_len,3) )
img = cv2.fillPoly(img, pts =co_text_all, color=(255,0,0))
for i in range(len(cx_ordered)-1):
start_point = (int(cx_ordered[i]), int(cy_ordered[i]))
end_point = (int(cx_ordered[i+1]), int(cy_ordered[i+1]))
img = cv2.arrowedLine(img, start_point, end_point,
color, thickness, tipLength = 0.03)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), img)

Loading…
Cancel
Save