diff --git a/generate_gt_for_training.py b/generate_gt_for_training.py index 9e0f45e..9869bfa 100644 --- a/generate_gt_for_training.py +++ b/generate_gt_for_training.py @@ -231,8 +231,12 @@ def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, i type=click.Path(exists=True, file_okay=False), ) +@click.option( + "--dir_imgs", + "-dimg", + help="directory where the overlayed plots will be written", ) -def visualize_reading_order(dir_xml, dir_out): +def visualize_reading_order(dir_xml, dir_out, dir_imgs): xml_files_ind = os.listdir(dir_xml) @@ -271,16 +275,26 @@ def visualize_reading_order(dir_xml, dir_out): color = (0, 0, 255) thickness = 20 - - img = np.zeros( (y_len,x_len,3) ) - img = cv2.fillPoly(img, pts =co_text_all, color=(255,0,0)) - for i in range(len(cx_ordered)-1): - start_point = (int(cx_ordered[i]), int(cy_ordered[i])) - end_point = (int(cx_ordered[i+1]), int(cy_ordered[i+1])) - img = cv2.arrowedLine(img, start_point, end_point, - color, thickness, tipLength = 0.03) - - cv2.imwrite(os.path.join(dir_out, f_name+'.png'), img) + if dir_imgs: + layout = np.zeros( (y_len,x_len,3) ) + layout = cv2.fillPoly(layout, pts =co_text_all, color=(1,1,1)) + + img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name) + img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format)) + + overlayed = overlay_layout_on_image(layout, img, cx_ordered, cy_ordered, color, thickness) + cv2.imwrite(os.path.join(dir_out, f_name+'.png'), overlayed) + + else: + img = np.zeros( (y_len,x_len,3) ) + img = cv2.fillPoly(img, pts =co_text_all, color=(255,0,0)) + for i in range(len(cx_ordered)-1): + start_point = (int(cx_ordered[i]), int(cy_ordered[i])) + end_point = (int(cx_ordered[i+1]), int(cy_ordered[i+1])) + img = cv2.arrowedLine(img, start_point, end_point, + color, thickness, tipLength = 0.03) + + cv2.imwrite(os.path.join(dir_out, f_name+'.png'), img) diff --git a/gt_gen_utils.py b/gt_gen_utils.py index 95b8414..753abf2 100644 --- a/gt_gen_utils.py +++ b/gt_gen_utils.py @@ -1290,3 +1290,56 @@ def update_list_and_return_first_with_length_bigger_than_one(index_element_to_be else: early_list_bigger_than_one = -20 return list_inp, early_list_bigger_than_one + +def overlay_layout_on_image(prediction, img, cx_ordered, cy_ordered, color, thickness): + + unique_classes = np.unique(prediction[:,:,0]) + rgb_colors = {'0' : [255, 255, 255], + '1' : [255, 0, 0], + '2' : [0, 0, 255], + '3' : [255, 0, 125], + '4' : [125, 125, 125], + '5' : [125, 125, 0], + '6' : [0, 125, 255], + '7' : [0, 125, 0], + '8' : [125, 125, 125], + '9' : [0, 125, 255], + '10' : [125, 0, 125], + '11' : [0, 255, 0], + '12' : [255, 125, 0], + '13' : [0, 255, 255], + '14' : [255, 125, 125], + '15' : [255, 0, 255]} + + layout_only = np.zeros(prediction.shape) + + for unq_class in unique_classes: + rgb_class_unique = rgb_colors[str(int(unq_class))] + layout_only[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0] + layout_only[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1] + layout_only[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2] + + + + #img = self.resize_image(img, layout_only.shape[0], layout_only.shape[1]) + + layout_only = layout_only.astype(np.int32) + + for i in range(len(cx_ordered)-1): + start_point = (int(cx_ordered[i]), int(cy_ordered[i])) + end_point = (int(cx_ordered[i+1]), int(cy_ordered[i+1])) + layout_only = cv2.arrowedLine(layout_only, start_point, end_point, + color, thickness, tipLength = 0.03) + + img = img.astype(np.int32) + + + + added_image = cv2.addWeighted(img,0.5,layout_only,0.1,0) + + return added_image + +def find_format_of_given_filename_in_dir(dir_imgs, f_name): + ls_imgs = os.listdir(dir_imgs) + file_interested = [ind for ind in ls_imgs if ind.startswith(f_name+'.')] + return file_interested[0]