|
|
@ -54,6 +54,7 @@ def config_params():
|
|
|
|
brightening = False # If true, brightening will be applied to the image. The amount of brightening is defined with "brightness" in config_params.json.
|
|
|
|
brightening = False # If true, brightening will be applied to the image. The amount of brightening is defined with "brightness" in config_params.json.
|
|
|
|
binarization = False # If true, Otsu thresholding will be applied to augment the input with binarized images.
|
|
|
|
binarization = False # If true, Otsu thresholding will be applied to augment the input with binarized images.
|
|
|
|
adding_rgb_background = False
|
|
|
|
adding_rgb_background = False
|
|
|
|
|
|
|
|
adding_rgb_foreground = False
|
|
|
|
add_red_textlines = False
|
|
|
|
add_red_textlines = False
|
|
|
|
channels_shuffling = False
|
|
|
|
channels_shuffling = False
|
|
|
|
dir_train = None # Directory of training dataset with subdirectories having the names "images" and "labels".
|
|
|
|
dir_train = None # Directory of training dataset with subdirectories having the names "images" and "labels".
|
|
|
@ -95,6 +96,7 @@ def config_params():
|
|
|
|
dir_img_bin = None
|
|
|
|
dir_img_bin = None
|
|
|
|
number_of_backgrounds_per_image = 1
|
|
|
|
number_of_backgrounds_per_image = 1
|
|
|
|
dir_rgb_backgrounds = None
|
|
|
|
dir_rgb_backgrounds = None
|
|
|
|
|
|
|
|
dir_rgb_foregrounds = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ex.automain
|
|
|
|
@ex.automain
|
|
|
@ -103,20 +105,25 @@ def run(_config, n_classes, n_epochs, input_height,
|
|
|
|
index_start, dir_of_start_model, is_loss_soft_dice,
|
|
|
|
index_start, dir_of_start_model, is_loss_soft_dice,
|
|
|
|
n_batch, patches, augmentation, flip_aug,
|
|
|
|
n_batch, patches, augmentation, flip_aug,
|
|
|
|
blur_aug, padding_white, padding_black, scaling, degrading,channels_shuffling,
|
|
|
|
blur_aug, padding_white, padding_black, scaling, degrading,channels_shuffling,
|
|
|
|
brightening, binarization, adding_rgb_background, add_red_textlines, blur_k, scales, degrade_scales,shuffle_indexes,
|
|
|
|
brightening, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, blur_k, scales, degrade_scales,shuffle_indexes,
|
|
|
|
brightness, dir_train, data_is_provided, scaling_bluring,
|
|
|
|
brightness, dir_train, data_is_provided, scaling_bluring,
|
|
|
|
scaling_brightness, scaling_binarization, rotation, rotation_not_90,
|
|
|
|
scaling_brightness, scaling_binarization, rotation, rotation_not_90,
|
|
|
|
thetha, scaling_flip, continue_training, transformer_projection_dim,
|
|
|
|
thetha, scaling_flip, continue_training, transformer_projection_dim,
|
|
|
|
transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_cnn_first,
|
|
|
|
transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_cnn_first,
|
|
|
|
transformer_patchsize_x, transformer_patchsize_y,
|
|
|
|
transformer_patchsize_x, transformer_patchsize_y,
|
|
|
|
transformer_num_patches_xy, backbone_type, flip_index, dir_eval, dir_output,
|
|
|
|
transformer_num_patches_xy, backbone_type, flip_index, dir_eval, dir_output,
|
|
|
|
pretraining, learning_rate, task, f1_threshold_classification, classification_classes_name, dir_img_bin, number_of_backgrounds_per_image,dir_rgb_backgrounds):
|
|
|
|
pretraining, learning_rate, task, f1_threshold_classification, classification_classes_name, dir_img_bin, number_of_backgrounds_per_image,dir_rgb_backgrounds, dir_rgb_foregrounds):
|
|
|
|
|
|
|
|
|
|
|
|
if dir_rgb_backgrounds:
|
|
|
|
if dir_rgb_backgrounds:
|
|
|
|
list_all_possible_background_images = os.listdir(dir_rgb_backgrounds)
|
|
|
|
list_all_possible_background_images = os.listdir(dir_rgb_backgrounds)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
list_all_possible_background_images = None
|
|
|
|
list_all_possible_background_images = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if dir_rgb_foregrounds:
|
|
|
|
|
|
|
|
list_all_possible_foreground_rgbs = os.listdir(dir_rgb_foregrounds)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
list_all_possible_foreground_rgbs = None
|
|
|
|
|
|
|
|
|
|
|
|
if task == "segmentation" or task == "enhancement" or task == "binarization":
|
|
|
|
if task == "segmentation" or task == "enhancement" or task == "binarization":
|
|
|
|
if data_is_provided:
|
|
|
|
if data_is_provided:
|
|
|
|
dir_train_flowing = os.path.join(dir_output, 'train')
|
|
|
|
dir_train_flowing = os.path.join(dir_output, 'train')
|
|
|
@ -175,18 +182,18 @@ def run(_config, n_classes, n_epochs, input_height,
|
|
|
|
# writing patches into a sub-folder in order to be flowed from directory.
|
|
|
|
# writing patches into a sub-folder in order to be flowed from directory.
|
|
|
|
provide_patches(imgs_list, segs_list, dir_img, dir_seg, dir_flow_train_imgs,
|
|
|
|
provide_patches(imgs_list, segs_list, dir_img, dir_seg, dir_flow_train_imgs,
|
|
|
|
dir_flow_train_labels, input_height, input_width, blur_k,
|
|
|
|
dir_flow_train_labels, input_height, input_width, blur_k,
|
|
|
|
blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background,add_red_textlines, channels_shuffling,
|
|
|
|
blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background,adding_rgb_foreground, add_red_textlines, channels_shuffling,
|
|
|
|
scaling, degrading, brightening, scales, degrade_scales, brightness,
|
|
|
|
scaling, degrading, brightening, scales, degrade_scales, brightness,
|
|
|
|
flip_index,shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
|
|
|
flip_index,shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
|
|
|
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=augmentation,
|
|
|
|
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=augmentation,
|
|
|
|
patches=patches, dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds)
|
|
|
|
patches=patches, dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds, dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs)
|
|
|
|
|
|
|
|
|
|
|
|
provide_patches(imgs_list_test, segs_list_test, dir_img_val, dir_seg_val,
|
|
|
|
provide_patches(imgs_list_test, segs_list_test, dir_img_val, dir_seg_val,
|
|
|
|
dir_flow_eval_imgs, dir_flow_eval_labels, input_height, input_width,
|
|
|
|
dir_flow_eval_imgs, dir_flow_eval_labels, input_height, input_width,
|
|
|
|
blur_k, blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background, add_red_textlines, channels_shuffling,
|
|
|
|
blur_k, blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, channels_shuffling,
|
|
|
|
scaling, degrading, brightening, scales, degrade_scales, brightness,
|
|
|
|
scaling, degrading, brightening, scales, degrade_scales, brightness,
|
|
|
|
flip_index, shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
|
|
|
flip_index, shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
|
|
|
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=patches,dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds)
|
|
|
|
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=patches,dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds,dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs )
|
|
|
|
|
|
|
|
|
|
|
|
if weighted_loss:
|
|
|
|
if weighted_loss:
|
|
|
|
weights = np.zeros(n_classes)
|
|
|
|
weights = np.zeros(n_classes)
|
|
|
|