mirror of
https://github.com/qurator-spk/sbb_pixelwise_segmentation.git
synced 2025-06-30 22:20:02 +02:00
adding foreground rgb to augmentation
This commit is contained in:
parent
4f0e3efa2b
commit
c502e67c14
3 changed files with 57 additions and 12 deletions
|
@ -13,13 +13,14 @@
|
|||
"augmentation" : true,
|
||||
"flip_aug" : false,
|
||||
"blur_aug" : false,
|
||||
"scaling" : true,
|
||||
"scaling" : false,
|
||||
"adding_rgb_background": true,
|
||||
"add_red_textlines": true,
|
||||
"channels_shuffling": true,
|
||||
"adding_rgb_foreground": true,
|
||||
"add_red_textlines": false,
|
||||
"channels_shuffling": false,
|
||||
"degrading": false,
|
||||
"brightening": false,
|
||||
"binarization" : false,
|
||||
"binarization" : true,
|
||||
"scaling_bluring" : false,
|
||||
"scaling_binarization" : false,
|
||||
"scaling_flip" : false,
|
||||
|
@ -51,6 +52,7 @@
|
|||
"dir_eval": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/eval_new",
|
||||
"dir_output": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/output_new",
|
||||
"dir_rgb_backgrounds": "/home/vahid/Documents/1_2_test_eynollah/set_rgb_background",
|
||||
"dir_rgb_foregrounds": "/home/vahid/Documents/1_2_test_eynollah/out_set_rgb_foreground",
|
||||
"dir_img_bin": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/train_new/images_bin"
|
||||
|
||||
}
|
||||
|
|
19
train.py
19
train.py
|
@ -54,6 +54,7 @@ def config_params():
|
|||
brightening = False # If true, brightening will be applied to the image. The amount of brightening is defined with "brightness" in config_params.json.
|
||||
binarization = False # If true, Otsu thresholding will be applied to augment the input with binarized images.
|
||||
adding_rgb_background = False
|
||||
adding_rgb_foreground = False
|
||||
add_red_textlines = False
|
||||
channels_shuffling = False
|
||||
dir_train = None # Directory of training dataset with subdirectories having the names "images" and "labels".
|
||||
|
@ -95,6 +96,7 @@ def config_params():
|
|||
dir_img_bin = None
|
||||
number_of_backgrounds_per_image = 1
|
||||
dir_rgb_backgrounds = None
|
||||
dir_rgb_foregrounds = None
|
||||
|
||||
|
||||
@ex.automain
|
||||
|
@ -103,20 +105,25 @@ def run(_config, n_classes, n_epochs, input_height,
|
|||
index_start, dir_of_start_model, is_loss_soft_dice,
|
||||
n_batch, patches, augmentation, flip_aug,
|
||||
blur_aug, padding_white, padding_black, scaling, degrading,channels_shuffling,
|
||||
brightening, binarization, adding_rgb_background, add_red_textlines, blur_k, scales, degrade_scales,shuffle_indexes,
|
||||
brightening, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, blur_k, scales, degrade_scales,shuffle_indexes,
|
||||
brightness, dir_train, data_is_provided, scaling_bluring,
|
||||
scaling_brightness, scaling_binarization, rotation, rotation_not_90,
|
||||
thetha, scaling_flip, continue_training, transformer_projection_dim,
|
||||
transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_cnn_first,
|
||||
transformer_patchsize_x, transformer_patchsize_y,
|
||||
transformer_num_patches_xy, backbone_type, flip_index, dir_eval, dir_output,
|
||||
pretraining, learning_rate, task, f1_threshold_classification, classification_classes_name, dir_img_bin, number_of_backgrounds_per_image,dir_rgb_backgrounds):
|
||||
pretraining, learning_rate, task, f1_threshold_classification, classification_classes_name, dir_img_bin, number_of_backgrounds_per_image,dir_rgb_backgrounds, dir_rgb_foregrounds):
|
||||
|
||||
if dir_rgb_backgrounds:
|
||||
list_all_possible_background_images = os.listdir(dir_rgb_backgrounds)
|
||||
else:
|
||||
list_all_possible_background_images = None
|
||||
|
||||
if dir_rgb_foregrounds:
|
||||
list_all_possible_foreground_rgbs = os.listdir(dir_rgb_foregrounds)
|
||||
else:
|
||||
list_all_possible_foreground_rgbs = None
|
||||
|
||||
if task == "segmentation" or task == "enhancement" or task == "binarization":
|
||||
if data_is_provided:
|
||||
dir_train_flowing = os.path.join(dir_output, 'train')
|
||||
|
@ -175,18 +182,18 @@ def run(_config, n_classes, n_epochs, input_height,
|
|||
# writing patches into a sub-folder in order to be flowed from directory.
|
||||
provide_patches(imgs_list, segs_list, dir_img, dir_seg, dir_flow_train_imgs,
|
||||
dir_flow_train_labels, input_height, input_width, blur_k,
|
||||
blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background,add_red_textlines, channels_shuffling,
|
||||
blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background,adding_rgb_foreground, add_red_textlines, channels_shuffling,
|
||||
scaling, degrading, brightening, scales, degrade_scales, brightness,
|
||||
flip_index,shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
||||
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=augmentation,
|
||||
patches=patches, dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds)
|
||||
patches=patches, dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds, dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs)
|
||||
|
||||
provide_patches(imgs_list_test, segs_list_test, dir_img_val, dir_seg_val,
|
||||
dir_flow_eval_imgs, dir_flow_eval_labels, input_height, input_width,
|
||||
blur_k, blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background, add_red_textlines, channels_shuffling,
|
||||
blur_k, blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, channels_shuffling,
|
||||
scaling, degrading, brightening, scales, degrade_scales, brightness,
|
||||
flip_index, shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
||||
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=patches,dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds)
|
||||
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=patches,dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds,dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs )
|
||||
|
||||
if weighted_loss:
|
||||
weights = np.zeros(n_classes)
|
||||
|
|
40
utils.py
40
utils.py
|
@ -40,6 +40,25 @@ def return_binary_image_with_given_rgb_background(img_bin, img_rgb_background):
|
|||
|
||||
return img_final
|
||||
|
||||
def return_binary_image_with_given_rgb_background_and_given_foreground_rgb(img_bin, img_rgb_background, rgb_foreground):
|
||||
img_rgb_background = resize_image(img_rgb_background ,img_bin.shape[0], img_bin.shape[1])
|
||||
|
||||
img_final = np.copy(img_bin)
|
||||
img_foreground = np.zeros(img_bin.shape)
|
||||
|
||||
|
||||
img_foreground[:,:,0][img_bin[:,:,0] == 0] = rgb_foreground[0]
|
||||
img_foreground[:,:,1][img_bin[:,:,0] == 0] = rgb_foreground[1]
|
||||
img_foreground[:,:,2][img_bin[:,:,0] == 0] = rgb_foreground[2]
|
||||
|
||||
|
||||
img_final[:,:,0][img_bin[:,:,0] != 0] = img_rgb_background[:,:,0][img_bin[:,:,0] != 0]
|
||||
img_final[:,:,1][img_bin[:,:,1] != 0] = img_rgb_background[:,:,1][img_bin[:,:,1] != 0]
|
||||
img_final[:,:,2][img_bin[:,:,2] != 0] = img_rgb_background[:,:,2][img_bin[:,:,2] != 0]
|
||||
|
||||
img_final = img_final + img_foreground
|
||||
return img_final
|
||||
|
||||
def return_binary_image_with_given_rgb_background_red_textlines(img_bin, img_rgb_background, img_color):
|
||||
img_rgb_background = resize_image(img_rgb_background ,img_bin.shape[0], img_bin.shape[1])
|
||||
|
||||
|
@ -641,10 +660,10 @@ def get_patches_num_scale_new(dir_img_f, dir_seg_f, img, label, height, width, i
|
|||
|
||||
def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow_train_imgs,
|
||||
dir_flow_train_labels, input_height, input_width, blur_k, blur_aug,
|
||||
padding_white, padding_black, flip_aug, binarization, adding_rgb_background, add_red_textlines, channels_shuffling, scaling, degrading,
|
||||
padding_white, padding_black, flip_aug, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, channels_shuffling, scaling, degrading,
|
||||
brightening, scales, degrade_scales, brightness, flip_index, shuffle_indexes,
|
||||
scaling_bluring, scaling_brightness, scaling_binarization, rotation,
|
||||
rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=False, dir_img_bin=None,number_of_backgrounds_per_image=None,list_all_possible_background_images=None, dir_rgb_backgrounds=None):
|
||||
rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=False, dir_img_bin=None,number_of_backgrounds_per_image=None,list_all_possible_background_images=None, dir_rgb_backgrounds=None, dir_rgb_foregrounds=None, list_all_possible_foreground_rgbs=None):
|
||||
|
||||
indexer = 0
|
||||
for im, seg_i in tqdm(zip(imgs_list_train, segs_list_train)):
|
||||
|
@ -754,6 +773,23 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow
|
|||
|
||||
indexer += 1
|
||||
|
||||
if adding_rgb_foreground:
|
||||
img_bin_corr = cv2.imread(dir_img_bin + '/' + img_name+'.png')
|
||||
for i_n in range(number_of_backgrounds_per_image):
|
||||
background_image_chosen_name = random.choice(list_all_possible_background_images)
|
||||
foreground_rgb_chosen_name = random.choice(list_all_possible_foreground_rgbs)
|
||||
|
||||
img_rgb_background_chosen = cv2.imread(dir_rgb_backgrounds + '/' + background_image_chosen_name)
|
||||
foreground_rgb_chosen = np.load(dir_rgb_foregrounds + '/' + foreground_rgb_chosen_name)
|
||||
|
||||
img_with_overlayed_background = return_binary_image_with_given_rgb_background_and_given_foreground_rgb(img_bin_corr, img_rgb_background_chosen, foreground_rgb_chosen)
|
||||
|
||||
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png', resize_image(img_with_overlayed_background, input_height, input_width))
|
||||
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
|
||||
resize_image(cv2.imread(dir_of_label_file), input_height, input_width))
|
||||
|
||||
indexer += 1
|
||||
|
||||
if add_red_textlines:
|
||||
img_bin_corr = cv2.imread(dir_img_bin + '/' + img_name+'.png')
|
||||
img_red_context = return_image_with_red_elements(cv2.imread(dir_img + '/'+im), img_bin_corr)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue