add files needed for training
parent
136a767018
commit
d4bc814d04
@ -0,0 +1,338 @@
|
||||
from keras import backend as K
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
def focal_loss(gamma=2., alpha=4.):
|
||||
|
||||
gamma = float(gamma)
|
||||
alpha = float(alpha)
|
||||
|
||||
def focal_loss_fixed(y_true, y_pred):
|
||||
"""Focal loss for multi-classification
|
||||
FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
|
||||
Notice: y_pred is probability after softmax
|
||||
gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
|
||||
d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
|
||||
Focal Loss for Dense Object Detection
|
||||
https://arxiv.org/abs/1708.02002
|
||||
|
||||
Arguments:
|
||||
y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
|
||||
y_pred {tensor} -- model's output, shape of [batch_size, num_cls]
|
||||
|
||||
Keyword Arguments:
|
||||
gamma {float} -- (default: {2.0})
|
||||
alpha {float} -- (default: {4.0})
|
||||
|
||||
Returns:
|
||||
[tensor] -- loss.
|
||||
"""
|
||||
epsilon = 1.e-9
|
||||
y_true = tf.convert_to_tensor(y_true, tf.float32)
|
||||
y_pred = tf.convert_to_tensor(y_pred, tf.float32)
|
||||
|
||||
model_out = tf.add(y_pred, epsilon)
|
||||
ce = tf.multiply(y_true, -tf.log(model_out))
|
||||
weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
|
||||
fl = tf.multiply(alpha, tf.multiply(weight, ce))
|
||||
reduced_fl = tf.reduce_max(fl, axis=1)
|
||||
return tf.reduce_mean(reduced_fl)
|
||||
return focal_loss_fixed
|
||||
|
||||
def weighted_categorical_crossentropy(weights=None):
|
||||
""" weighted_categorical_crossentropy
|
||||
|
||||
Args:
|
||||
* weights<ktensor|nparray|list>: crossentropy weights
|
||||
Returns:
|
||||
* weighted categorical crossentropy function
|
||||
"""
|
||||
|
||||
def loss(y_true, y_pred):
|
||||
labels_floats = tf.cast(y_true, tf.float32)
|
||||
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats,logits=y_pred)
|
||||
|
||||
if weights is not None:
|
||||
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
|
||||
np.array(weights, dtype=np.float32)[None, None, None])
|
||||
* labels_floats, axis=-1), 1.0)
|
||||
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
|
||||
return tf.reduce_mean(per_pixel_loss)
|
||||
return loss
|
||||
def image_categorical_cross_entropy(y_true, y_pred, weights=None):
|
||||
"""
|
||||
:param y_true: tensor of shape (batch_size, height, width) representing the ground truth.
|
||||
:param y_pred: tensor of shape (batch_size, height, width) representing the prediction.
|
||||
:return: The mean cross-entropy on softmaxed tensors.
|
||||
"""
|
||||
|
||||
labels_floats = tf.cast(y_true, tf.float32)
|
||||
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats,logits=y_pred)
|
||||
|
||||
if weights is not None:
|
||||
weight_mask = tf.maximum(
|
||||
tf.reduce_max(tf.constant(
|
||||
np.array(weights, dtype=np.float32)[None, None, None])
|
||||
* labels_floats, axis=-1), 1.0)
|
||||
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
|
||||
|
||||
return tf.reduce_mean(per_pixel_loss)
|
||||
def class_tversky(y_true, y_pred):
|
||||
smooth = 1.0#1.00
|
||||
|
||||
y_true = K.permute_dimensions(y_true, (3,1,2,0))
|
||||
y_pred = K.permute_dimensions(y_pred, (3,1,2,0))
|
||||
|
||||
y_true_pos = K.batch_flatten(y_true)
|
||||
y_pred_pos = K.batch_flatten(y_pred)
|
||||
true_pos = K.sum(y_true_pos * y_pred_pos, 1)
|
||||
false_neg = K.sum(y_true_pos * (1-y_pred_pos), 1)
|
||||
false_pos = K.sum((1-y_true_pos)*y_pred_pos, 1)
|
||||
alpha = 0.2#0.5
|
||||
beta=0.8
|
||||
return (true_pos + smooth)/(true_pos + alpha*false_neg + (beta)*false_pos + smooth)
|
||||
|
||||
def focal_tversky_loss(y_true,y_pred):
|
||||
pt_1 = class_tversky(y_true, y_pred)
|
||||
gamma =1.3#4./3.0#1.3#4.0/3.00# 0.75
|
||||
return K.sum(K.pow((1-pt_1), gamma))
|
||||
|
||||
def generalized_dice_coeff2(y_true, y_pred):
|
||||
n_el = 1
|
||||
for dim in y_true.shape:
|
||||
n_el *= int(dim)
|
||||
n_cl = y_true.shape[-1]
|
||||
w = K.zeros(shape=(n_cl,))
|
||||
w = (K.sum(y_true, axis=(0,1,2)))/(n_el)
|
||||
w = 1/(w**2+0.000001)
|
||||
numerator = y_true*y_pred
|
||||
numerator = w*K.sum(numerator,(0,1,2))
|
||||
numerator = K.sum(numerator)
|
||||
denominator = y_true+y_pred
|
||||
denominator = w*K.sum(denominator,(0,1,2))
|
||||
denominator = K.sum(denominator)
|
||||
return 2*numerator/denominator
|
||||
def generalized_dice_coeff(y_true, y_pred):
|
||||
axes = tuple(range(1, len(y_pred.shape)-1))
|
||||
Ncl = y_pred.shape[-1]
|
||||
w = K.zeros(shape=(Ncl,))
|
||||
w = K.sum(y_true, axis=axes)
|
||||
w = 1/(w**2+0.000001)
|
||||
# Compute gen dice coef:
|
||||
numerator = y_true*y_pred
|
||||
numerator = w*K.sum(numerator,axes)
|
||||
numerator = K.sum(numerator)
|
||||
|
||||
denominator = y_true+y_pred
|
||||
denominator = w*K.sum(denominator,axes)
|
||||
denominator = K.sum(denominator)
|
||||
|
||||
gen_dice_coef = 2*numerator/denominator
|
||||
|
||||
return gen_dice_coef
|
||||
|
||||
def generalized_dice_loss(y_true, y_pred):
|
||||
return 1 - generalized_dice_coeff2(y_true, y_pred)
|
||||
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
|
||||
'''
|
||||
Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.
|
||||
Assumes the `channels_last` format.
|
||||
|
||||
# Arguments
|
||||
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
|
||||
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
|
||||
epsilon: Used for numerical stability to avoid divide by zero errors
|
||||
|
||||
# References
|
||||
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
|
||||
https://arxiv.org/abs/1606.04797
|
||||
More details on Dice loss formulation
|
||||
https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72)
|
||||
|
||||
Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022
|
||||
'''
|
||||
|
||||
# skip the batch and class axis for calculating Dice score
|
||||
axes = tuple(range(1, len(y_pred.shape)-1))
|
||||
|
||||
numerator = 2. * K.sum(y_pred * y_true, axes)
|
||||
|
||||
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
|
||||
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
|
||||
|
||||
def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last = True, mean_per_class=False, verbose=False):
|
||||
"""
|
||||
Compute mean metrics of two segmentation masks, via Keras.
|
||||
|
||||
IoU(A,B) = |A & B| / (| A U B|)
|
||||
Dice(A,B) = 2*|A & B| / (|A| + |B|)
|
||||
|
||||
Args:
|
||||
y_true: true masks, one-hot encoded.
|
||||
y_pred: predicted masks, either softmax outputs, or one-hot encoded.
|
||||
metric_name: metric to be computed, either 'iou' or 'dice'.
|
||||
metric_type: one of 'standard' (default), 'soft', 'naive'.
|
||||
In the standard version, y_pred is one-hot encoded and the mean
|
||||
is taken only over classes that are present (in y_true or y_pred).
|
||||
The 'soft' version of the metrics are computed without one-hot
|
||||
encoding y_pred.
|
||||
The 'naive' version return mean metrics where absent classes contribute
|
||||
to the class mean as 1.0 (instead of being dropped from the mean).
|
||||
drop_last = True: boolean flag to drop last class (usually reserved
|
||||
for background class in semantic segmentation)
|
||||
mean_per_class = False: return mean along batch axis for each class.
|
||||
verbose = False: print intermediate results such as intersection, union
|
||||
(as number of pixels).
|
||||
Returns:
|
||||
IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True
|
||||
in which case it returns the per-class metric, averaged over the batch.
|
||||
|
||||
Inputs are B*W*H*N tensors, with
|
||||
B = batch size,
|
||||
W = width,
|
||||
H = height,
|
||||
N = number of classes
|
||||
"""
|
||||
|
||||
flag_soft = (metric_type == 'soft')
|
||||
flag_naive_mean = (metric_type == 'naive')
|
||||
|
||||
# always assume one or more classes
|
||||
num_classes = K.shape(y_true)[-1]
|
||||
|
||||
if not flag_soft:
|
||||
# get one-hot encoded masks from y_pred (true masks should already be one-hot)
|
||||
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
|
||||
y_true = K.one_hot(K.argmax(y_true), num_classes)
|
||||
|
||||
# if already one-hot, could have skipped above command
|
||||
# keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64)
|
||||
y_true = K.cast(y_true, 'float32')
|
||||
y_pred = K.cast(y_pred, 'float32')
|
||||
|
||||
# intersection and union shapes are batch_size * n_classes (values = area in pixels)
|
||||
axes = (1,2) # W,H axes of each image
|
||||
intersection = K.sum(K.abs(y_true * y_pred), axis=axes)
|
||||
mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes)
|
||||
union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot
|
||||
|
||||
smooth = .001
|
||||
iou = (intersection + smooth) / (union + smooth)
|
||||
dice = 2 * (intersection + smooth)/(mask_sum + smooth)
|
||||
|
||||
metric = {'iou': iou, 'dice': dice}[metric_name]
|
||||
|
||||
# define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise
|
||||
mask = K.cast(K.not_equal(union, 0), 'float32')
|
||||
|
||||
if drop_last:
|
||||
metric = metric[:,:-1]
|
||||
mask = mask[:,:-1]
|
||||
|
||||
if verbose:
|
||||
print('intersection, union')
|
||||
print(K.eval(intersection), K.eval(union))
|
||||
print(K.eval(intersection/union))
|
||||
|
||||
# return mean metrics: remaining axes are (batch, classes)
|
||||
if flag_naive_mean:
|
||||
return K.mean(metric)
|
||||
|
||||
# take mean only over non-absent classes
|
||||
class_count = K.sum(mask, axis=0)
|
||||
non_zero = tf.greater(class_count, 0)
|
||||
non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero)
|
||||
non_zero_count = tf.boolean_mask(class_count, non_zero)
|
||||
|
||||
if verbose:
|
||||
print('Counts of inputs with class present, metrics for non-absent classes')
|
||||
print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count))
|
||||
|
||||
return K.mean(non_zero_sum / non_zero_count)
|
||||
|
||||
def mean_iou(y_true, y_pred, **kwargs):
|
||||
"""
|
||||
Compute mean Intersection over Union of two segmentation masks, via Keras.
|
||||
|
||||
Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs.
|
||||
"""
|
||||
return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs)
|
||||
def Mean_IOU(y_true, y_pred):
|
||||
nb_classes = K.int_shape(y_pred)[-1]
|
||||
iou = []
|
||||
true_pixels = K.argmax(y_true, axis=-1)
|
||||
pred_pixels = K.argmax(y_pred, axis=-1)
|
||||
void_labels = K.equal(K.sum(y_true, axis=-1), 0)
|
||||
for i in range(0, nb_classes): # exclude first label (background) and last label (void)
|
||||
true_labels = K.equal(true_pixels, i)# & ~void_labels
|
||||
pred_labels = K.equal(pred_pixels, i)# & ~void_labels
|
||||
inter = tf.to_int32(true_labels & pred_labels)
|
||||
union = tf.to_int32(true_labels | pred_labels)
|
||||
legal_batches = K.sum(tf.to_int32(true_labels), axis=1)>0
|
||||
ious = K.sum(inter, axis=1)/K.sum(union, axis=1)
|
||||
iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects
|
||||
iou = tf.stack(iou)
|
||||
legal_labels = ~tf.debugging.is_nan(iou)
|
||||
iou = tf.gather(iou, indices=tf.where(legal_labels))
|
||||
return K.mean(iou)
|
||||
|
||||
def iou_vahid(y_true, y_pred):
|
||||
nb_classes = tf.shape(y_true)[-1]+tf.to_int32(1)
|
||||
true_pixels = K.argmax(y_true, axis=-1)
|
||||
pred_pixels = K.argmax(y_pred, axis=-1)
|
||||
iou = []
|
||||
|
||||
for i in tf.range(nb_classes):
|
||||
tp=K.sum( tf.to_int32( K.equal(true_pixels, i) & K.equal(pred_pixels, i) ) )
|
||||
fp=K.sum( tf.to_int32( K.not_equal(true_pixels, i) & K.equal(pred_pixels, i) ) )
|
||||
fn=K.sum( tf.to_int32( K.equal(true_pixels, i) & K.not_equal(pred_pixels, i) ) )
|
||||
iouh=tp/(tp+fp+fn)
|
||||
iou.append(iouh)
|
||||
return K.mean(iou)
|
||||
|
||||
|
||||
def IoU_metric(Yi,y_predi):
|
||||
## mean Intersection over Union
|
||||
## Mean IoU = TP/(FN + TP + FP)
|
||||
y_predi = np.argmax(y_predi, axis=3)
|
||||
y_testi = np.argmax(Yi, axis=3)
|
||||
IoUs = []
|
||||
Nclass = int(np.max(Yi)) + 1
|
||||
for c in range(Nclass):
|
||||
TP = np.sum( (Yi == c)&(y_predi==c) )
|
||||
FP = np.sum( (Yi != c)&(y_predi==c) )
|
||||
FN = np.sum( (Yi == c)&(y_predi != c))
|
||||
IoU = TP/float(TP + FP + FN)
|
||||
IoUs.append(IoU)
|
||||
return K.cast( np.mean(IoUs) ,dtype='float32' )
|
||||
|
||||
|
||||
def IoU_metric_keras(y_true, y_pred):
|
||||
## mean Intersection over Union
|
||||
## Mean IoU = TP/(FN + TP + FP)
|
||||
init = tf.global_variables_initializer()
|
||||
sess = tf.Session()
|
||||
sess.run(init)
|
||||
|
||||
return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess))
|
||||
|
||||
def jaccard_distance_loss(y_true, y_pred, smooth=100):
|
||||
"""
|
||||
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
|
||||
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
|
||||
|
||||
The jaccard distance loss is usefull for unbalanced datasets. This has been
|
||||
shifted so it converges on 0 and is smoothed to avoid exploding or disapearing
|
||||
gradient.
|
||||
|
||||
Ref: https://en.wikipedia.org/wiki/Jaccard_index
|
||||
|
||||
@url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96
|
||||
@author: wassname
|
||||
"""
|
||||
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
|
||||
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
|
||||
jac = (intersection + smooth) / (sum_ - intersection + smooth)
|
||||
return (1 - jac) * smooth
|
||||
|
||||
|
@ -0,0 +1,317 @@
|
||||
from keras.models import *
|
||||
from keras.layers import *
|
||||
from keras import layers
|
||||
from keras.regularizers import l2
|
||||
|
||||
resnet50_Weights_path='./pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
|
||||
IMAGE_ORDERING ='channels_last'
|
||||
MERGE_AXIS=-1
|
||||
|
||||
|
||||
def one_side_pad( x ):
|
||||
x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x)
|
||||
if IMAGE_ORDERING == 'channels_first':
|
||||
x = Lambda(lambda x : x[: , : , :-1 , :-1 ] )(x)
|
||||
elif IMAGE_ORDERING == 'channels_last':
|
||||
x = Lambda(lambda x : x[: , :-1 , :-1 , : ] )(x)
|
||||
return x
|
||||
|
||||
def identity_block(input_tensor, kernel_size, filters, stage, block):
|
||||
"""The identity block is the block that has no conv layer at shortcut.
|
||||
# Arguments
|
||||
input_tensor: input tensor
|
||||
kernel_size: defualt 3, the kernel size of middle conv layer at main path
|
||||
filters: list of integers, the filterss of 3 conv layer at main path
|
||||
stage: integer, current stage label, used for generating layer names
|
||||
block: 'a','b'..., current block label, used for generating layer names
|
||||
# Returns
|
||||
Output tensor for the block.
|
||||
"""
|
||||
filters1, filters2, filters3 = filters
|
||||
|
||||
if IMAGE_ORDERING == 'channels_last':
|
||||
bn_axis = 3
|
||||
else:
|
||||
bn_axis = 1
|
||||
|
||||
conv_name_base = 'res' + str(stage) + block + '_branch'
|
||||
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
||||
|
||||
x = Conv2D(filters1, (1, 1) , data_format=IMAGE_ORDERING , name=conv_name_base + '2a')(input_tensor)
|
||||
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
|
||||
x = Activation('relu')(x)
|
||||
|
||||
x = Conv2D(filters2, kernel_size , data_format=IMAGE_ORDERING ,
|
||||
padding='same', name=conv_name_base + '2b')(x)
|
||||
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
|
||||
x = Activation('relu')(x)
|
||||
|
||||
x = Conv2D(filters3 , (1, 1), data_format=IMAGE_ORDERING , name=conv_name_base + '2c')(x)
|
||||
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
|
||||
|
||||
x = layers.add([x, input_tensor])
|
||||
x = Activation('relu')(x)
|
||||
return x
|
||||
|
||||
|
||||
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
|
||||
"""conv_block is the block that has a conv layer at shortcut
|
||||
# Arguments
|
||||
input_tensor: input tensor
|
||||
kernel_size: defualt 3, the kernel size of middle conv layer at main path
|
||||
filters: list of integers, the filterss of 3 conv layer at main path
|
||||
stage: integer, current stage label, used for generating layer names
|
||||
block: 'a','b'..., current block label, used for generating layer names
|
||||
# Returns
|
||||
Output tensor for the block.
|
||||
Note that from stage 3, the first conv layer at main path is with strides=(2,2)
|
||||
And the shortcut should have strides=(2,2) as well
|
||||
"""
|
||||
filters1, filters2, filters3 = filters
|
||||
|
||||
if IMAGE_ORDERING == 'channels_last':
|
||||
bn_axis = 3
|
||||
else:
|
||||
bn_axis = 1
|
||||
|
||||
conv_name_base = 'res' + str(stage) + block + '_branch'
|
||||
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
||||
|
||||
x = Conv2D(filters1, (1, 1) , data_format=IMAGE_ORDERING , strides=strides,
|
||||
name=conv_name_base + '2a')(input_tensor)
|
||||
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
|
||||
x = Activation('relu')(x)
|
||||
|
||||
x = Conv2D(filters2, kernel_size , data_format=IMAGE_ORDERING , padding='same',
|
||||
name=conv_name_base + '2b')(x)
|
||||
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
|
||||
x = Activation('relu')(x)
|
||||
|
||||
x = Conv2D(filters3, (1, 1) , data_format=IMAGE_ORDERING , name=conv_name_base + '2c')(x)
|
||||
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
|
||||
|
||||
shortcut = Conv2D(filters3, (1, 1) , data_format=IMAGE_ORDERING , strides=strides,
|
||||
name=conv_name_base + '1')(input_tensor)
|
||||
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
|
||||
|
||||
x = layers.add([x, shortcut])
|
||||
x = Activation('relu')(x)
|
||||
return x
|
||||
|
||||
|
||||
def resnet50_unet_light(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
|
||||
assert input_height%32 == 0
|
||||
assert input_width%32 == 0
|
||||
|
||||
|
||||
img_input = Input(shape=(input_height,input_width , 3 ))
|
||||
|
||||
if IMAGE_ORDERING == 'channels_last':
|
||||
bn_axis = 3
|
||||
else:
|
||||
bn_axis = 1
|
||||
|
||||
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
||||
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
|
||||
f1 = x
|
||||
|
||||
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
||||
x = Activation('relu')(x)
|
||||
x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x)
|
||||
|
||||
|
||||
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
||||
f2 = one_side_pad(x )
|
||||
|
||||
|
||||
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
||||
f3 = x
|
||||
|
||||
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
||||
f4 = x
|
||||
|
||||
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
||||
f5 = x
|
||||
|
||||
|
||||
if pretraining:
|
||||
model=Model( img_input , x ).load_weights(resnet50_Weights_path)
|
||||
|
||||
|
||||
v512_2048 = Conv2D( 512 , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( f5 )
|
||||
v512_2048 = ( BatchNormalization(axis=bn_axis))(v512_2048)
|
||||
v512_2048 = Activation('relu')(v512_2048)
|
||||
|
||||
|
||||
|
||||
v512_1024=Conv2D( 512 , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( f4 )
|
||||
v512_1024 = ( BatchNormalization(axis=bn_axis))(v512_1024)
|
||||
v512_1024 = Activation('relu')(v512_1024)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(v512_2048)
|
||||
o = ( concatenate([ o ,v512_1024],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([ o ,f3],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( Conv2D( 256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([o,f2],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING))(o)
|
||||
o = ( Conv2D( 128 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay) ) )(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([o,f1],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o)
|
||||
o = ( Conv2D( 64 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([o,img_input],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o)
|
||||
o = ( Conv2D( 32 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
|
||||
o = Conv2D( n_classes , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( o )
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = (Activation('softmax'))(o)
|
||||
|
||||
|
||||
model = Model( img_input , o )
|
||||
return model
|
||||
|
||||
def resnet50_unet(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
|
||||
assert input_height%32 == 0
|
||||
assert input_width%32 == 0
|
||||
|
||||
|
||||
img_input = Input(shape=(input_height,input_width , 3 ))
|
||||
|
||||
if IMAGE_ORDERING == 'channels_last':
|
||||
bn_axis = 3
|
||||
else:
|
||||
bn_axis = 1
|
||||
|
||||
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
||||
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
|
||||
f1 = x
|
||||
|
||||
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
||||
x = Activation('relu')(x)
|
||||
x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x)
|
||||
|
||||
|
||||
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
||||
f2 = one_side_pad(x )
|
||||
|
||||
|
||||
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
||||
f3 = x
|
||||
|
||||
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
||||
f4 = x
|
||||
|
||||
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
||||
f5 = x
|
||||
|
||||
if pretraining:
|
||||
Model( img_input , x ).load_weights(resnet50_Weights_path)
|
||||
|
||||
v1024_2048 = Conv2D( 1024 , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( f5 )
|
||||
v1024_2048 = ( BatchNormalization(axis=bn_axis))(v1024_2048)
|
||||
v1024_2048 = Activation('relu')(v1024_2048)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(v1024_2048)
|
||||
o = ( concatenate([ o ,f4],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([ o ,f3],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( Conv2D( 256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([o,f2],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING))(o)
|
||||
o = ( Conv2D( 128 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay) ) )(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([o,f1],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o)
|
||||
o = ( Conv2D( 64 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o)
|
||||
o = ( concatenate([o,img_input],axis=MERGE_AXIS ) )
|
||||
o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o)
|
||||
o = ( Conv2D( 32 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o)
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = Activation('relu')(o)
|
||||
|
||||
|
||||
o = Conv2D( n_classes , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( o )
|
||||
o = ( BatchNormalization(axis=bn_axis))(o)
|
||||
o = (Activation('softmax'))(o)
|
||||
|
||||
model = Model( img_input , o )
|
||||
|
||||
|
||||
|
||||
|
||||
return model
|
Loading…
Reference in New Issue