diff --git a/gt_gen_utils.py b/gt_gen_utils.py index 0ac15a2..5076dd6 100644 --- a/gt_gen_utils.py +++ b/gt_gen_utils.py @@ -125,7 +125,7 @@ def get_content_of_dir(dir_in): """ gt_all=os.listdir(dir_in) - gt_list=[file for file in gt_all if file.split('.')[ len(file.split('.'))-1 ]=='xml' ] + gt_list = [file for file in gt_all if os.path.splitext(file)[1] == '.xml'] return gt_list def return_parent_contours(contours, hierarchy): @@ -555,7 +555,7 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_ if dir_images: ls_org_imgs = os.listdir(dir_images) - ls_org_imgs_stem = [item.split('.')[0] for item in ls_org_imgs] + ls_org_imgs_stem = [os.path.splitext(item)[0] for item in ls_org_imgs] for index in tqdm(range(len(gt_list))): #try: print(gt_list[index]) @@ -722,10 +722,10 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_ img_poly = resize_image(img_poly, y_new, x_new) try: - xml_file_stem = gt_list[index].split('-')[1].split('.')[0] + xml_file_stem = os.path.splitext(gt_list[index])[0] cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly) except: - xml_file_stem = gt_list[index].split('.')[0] + xml_file_stem = os.path.splitext(gt_list[index])[0] cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly) if dir_images: @@ -1185,10 +1185,10 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_ img_poly = resize_image(img_poly, y_new, x_new) try: - xml_file_stem = gt_list[index].split('-')[1].split('.')[0] + xml_file_stem = os.path.splitext(gt_list[index])[0] cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly) except: - xml_file_stem = gt_list[index].split('.')[0] + xml_file_stem = os.path.splitext(gt_list[index])[0] cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly) diff --git a/utils.py b/utils.py index 8be6963..2bb7261 100644 --- a/utils.py +++ b/utils.py @@ -434,7 +434,7 @@ def generate_arrays_from_folder_reading_order(classes_file_dir, modal_dir, batch batchcount = 0 while True: for i in all_labels_files: - file_name = i.split('.')[0] + file_name = os.path.splitext(i)[0] img = cv2.imread(os.path.join(modal_dir,file_name+'.png')) label_class = int( np.load(os.path.join(classes_file_dir,i)) ) @@ -479,7 +479,7 @@ def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_c for i in range(c, c + batch_size): # initially from 0 to 16, c = 0. try: - filename = n[i].split('.')[0] + filename = os.path.splitext(n[i])[0] train_img = cv2.imread(img_folder + '/' + n[i]) / 255. train_img = cv2.resize(train_img, (input_width, input_height), @@ -745,7 +745,7 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow indexer = 0 for im, seg_i in tqdm(zip(imgs_list_train, segs_list_train)): - img_name = im.split('.')[0] + img_name = os.path.splitext(im)[0] if task == "segmentation" or task == "binarization": dir_of_label_file = os.path.join(dir_seg, img_name + '.png') elif task=="enhancement":