integrating first working classification training model

pull/18/head
vahidrezanezhad 8 months ago
parent d27647a0f1
commit dbb84507ed

@ -1,13 +1,15 @@
{
"model_name" : "hybrid_transformer_cnn",
"model_name" : "resnet50_unet",
"task": "classification",
"n_classes" : 2,
"n_epochs" : 2,
"input_height" : 448,
"input_width" : 448,
"n_epochs" : 7,
"input_height" : 224,
"input_width" : 224,
"weight_decay" : 1e-6,
"n_batch" : 2,
"n_batch" : 6,
"learning_rate": 1e-4,
"patches" : true,
"f1_threshold_classification": 0.8,
"patches" : false,
"pretraining" : true,
"augmentation" : false,
"flip_aug" : false,
@ -33,7 +35,7 @@
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "/train",
"dir_eval": "/eval",
"dir_output": "/out"
"dir_train": "/home/vahid/Downloads/image_classification_data/train",
"dir_eval": "/home/vahid/Downloads/image_classification_data/eval",
"dir_output": "/home/vahid/Downloads/image_classification_data/output"
}

@ -400,7 +400,7 @@ def vit_resnet50_unet(n_classes,patch_size, num_patches, input_height=224,input_
f5 = x
if pretraining:
model = keras.Model(inputs, x).load_weights(resnet50_Weights_path)
model = Model(inputs, x).load_weights(resnet50_Weights_path)
num_patches = x.shape[1]*x.shape[2]
patches = Patches(patch_size)(x)
@ -468,6 +468,71 @@ def vit_resnet50_unet(n_classes,patch_size, num_patches, input_height=224,input_
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
model = keras.Model(inputs=inputs, outputs=o)
model = Model(inputs=inputs, outputs=o)
return model
def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
include_top=True
assert input_height%32 == 0
assert input_width%32 == 0
img_input = Input(shape=(input_height,input_width , 3 ))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x )
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
Model(img_input, x).load_weights(resnet50_Weights_path)
x = AveragePooling2D((7, 7), name='avg_pool')(x)
x = Flatten()(x)
##
x = Dense(256, activation='relu', name='fc512')(x)
x=Dropout(0.2)(x)
##
x = Dense(n_classes, activation='softmax', name='fc1000')(x)
model = Model(img_input, x)
return model

@ -6,3 +6,4 @@ tqdm
imutils
numpy
scipy
scikit-learn

@ -11,6 +11,7 @@ from metrics import *
from tensorflow.keras.models import load_model
from tqdm import tqdm
import json
from sklearn.metrics import f1_score
def configuration():
@ -73,6 +74,8 @@ def config_params():
is_loss_soft_dice = False # Use soft dice as loss function. When set to true, "weighted_loss" must be false.
weighted_loss = False # Use weighted categorical cross entropy as loss fucntion. When set to true, "is_loss_soft_dice" must be false.
data_is_provided = False # Only set this to true when you have already provided the input data and the train and eval data are in "dir_output".
task = "segmentation" # This parameter defines task of model which can be segmentation, enhancement or classification.
f1_threshold_classification = None # This threshold is used to consider models with an evaluation f1 scores bigger than it. The selected model weights undergo a weights ensembling. And avreage ensembled model will be written to output.
@ex.automain
@ -86,7 +89,9 @@ def run(_config, n_classes, n_epochs, input_height,
scaling_brightness, scaling_binarization, rotation, rotation_not_90,
thetha, scaling_flip, continue_training, transformer_patchsize,
num_patches_xy, model_name, flip_index, dir_eval, dir_output,
pretraining, learning_rate):
pretraining, learning_rate, task, f1_threshold_classification):
if task == "segmentation":
num_patches = num_patches_xy[0]*num_patches_xy[1]
if data_is_provided:
@ -245,3 +250,78 @@ def run(_config, n_classes, n_epochs, input_height,
#os.system('rm -rf '+dir_eval_flowing)
#model.save(dir_output+'/'+'model'+'.h5')
elif task=='classification':
configuration()
model = resnet50_classifier(n_classes, input_height, input_width,weight_decay,pretraining)
opt_adam = Adam(learning_rate=0.001)
model.compile(loss='categorical_crossentropy',
optimizer = opt_adam,metrics=['accuracy'])
testX, testY = generate_data_from_folder_evaluation(dir_eval, input_height, input_width, n_classes)
#print(testY.shape, testY)
y_tot=np.zeros((testX.shape[0],n_classes))
indexer=0
score_best=[]
score_best.append(0)
num_rows = return_number_of_total_training_data(dir_train)
weights=[]
for i in range(n_epochs):
#history = model.fit(trainX, trainY, epochs=1, batch_size=n_batch, validation_data=(testX, testY), verbose=2)#,class_weight=weights)
history = model.fit( generate_data_from_folder_training(dir_train, n_batch , input_height, input_width, n_classes), steps_per_epoch=num_rows / n_batch, verbose=0)#,class_weight=weights)
y_pr_class = []
for jj in range(testY.shape[0]):
y_pr=model.predict(testX[jj,:,:,:].reshape(1,input_height,input_width,3), verbose=0)
y_pr_ind= np.argmax(y_pr,axis=1)
#print(y_pr_ind, 'y_pr_ind')
y_pr_class.append(y_pr_ind)
y_pr_class = np.array(y_pr_class)
#model.save('./models_save/model_'+str(i)+'.h5')
#y_pr_class=np.argmax(y_pr,axis=1)
f1score=f1_score(np.argmax(testY,axis=1), y_pr_class, average='macro')
print(i,f1score)
if f1score>score_best[0]:
score_best[0]=f1score
model.save(os.path.join(dir_output,'model_best'))
##best_model=keras.models.clone_model(model)
##best_model.build()
##best_model.set_weights(model.get_weights())
if f1score > f1_threshold_classification:
weights.append(model.get_weights() )
y_tot=y_tot+y_pr
indexer+=1
y_tot=y_tot/float(indexer)
new_weights=list()
for weights_list_tuple in zip(*weights):
new_weights.append( [np.array(weights_).mean(axis=0) for weights_ in zip(*weights_list_tuple)] )
new_weights = [np.array(x) for x in new_weights]
model_weight_averaged=tf.keras.models.clone_model(model)
model_weight_averaged.set_weights(new_weights)
#y_tot_end=np.argmax(y_tot,axis=1)
#print(f1_score(np.argmax(testY,axis=1), y_tot_end, average='macro'))
##best_model.save('model_taza.h5')
model_weight_averaged.save(os.path.join(dir_output,'model_ens_avg'))

@ -8,6 +8,119 @@ import random
from tqdm import tqdm
import imutils
import math
from tensorflow.keras.utils import to_categorical
def return_number_of_total_training_data(path_classes):
sub_classes = os.listdir(path_classes)
n_tot = 0
for sub_c in sub_classes:
sub_files = os.listdir(os.path.join(path_classes,sub_c))
n_tot = n_tot + len(sub_files)
return n_tot
def generate_data_from_folder_evaluation(path_classes, height, width, n_classes):
sub_classes = os.listdir(path_classes)
#n_classes = len(sub_classes)
all_imgs = []
labels = []
dicts =dict()
indexer= 0
for sub_c in sub_classes:
sub_files = os.listdir(os.path.join(path_classes,sub_c ))
sub_files = [os.path.join(path_classes,sub_c )+'/' + x for x in sub_files]
#print( os.listdir(os.path.join(path_classes,sub_c )) )
all_imgs = all_imgs + sub_files
sub_labels = list( np.zeros( len(sub_files) ) +indexer )
#print( len(sub_labels) )
labels = labels + sub_labels
dicts[sub_c] = indexer
indexer +=1
categories = to_categorical(range(n_classes)).astype(np.int16)#[ [1 , 0, 0 , 0 , 0 , 0] , [0 , 1, 0 , 0 , 0 , 0] , [0 , 0, 1 , 0 , 0 , 0] , [0 , 0, 0 , 1 , 0 , 0] , [0 , 0, 0 , 0 , 1 , 0] , [0 , 0, 0 , 0 , 0 , 1] ]
ret_x= np.zeros((len(labels), height,width, 3)).astype(np.int16)
ret_y= np.zeros((len(labels), n_classes)).astype(np.int16)
#print(all_imgs)
for i in range(len(all_imgs)):
row = all_imgs[i]
#####img = cv2.imread(row, 0)
#####img= resize_image (img, height, width)
#####img = img.astype(np.uint16)
#####ret_x[i, :,:,0] = img[:,:]
#####ret_x[i, :,:,1] = img[:,:]
#####ret_x[i, :,:,2] = img[:,:]
img = cv2.imread(row)
img= resize_image (img, height, width)
img = img.astype(np.uint16)
ret_x[i, :,:] = img[:,:,:]
ret_y[i, :] = categories[ int( labels[i] ) ][:]
return ret_x/255., ret_y
def generate_data_from_folder_training(path_classes, batchsize, height, width, n_classes):
sub_classes = os.listdir(path_classes)
n_classes = len(sub_classes)
all_imgs = []
labels = []
dicts =dict()
indexer= 0
for sub_c in sub_classes:
sub_files = os.listdir(os.path.join(path_classes,sub_c ))
sub_files = [os.path.join(path_classes,sub_c )+'/' + x for x in sub_files]
#print( os.listdir(os.path.join(path_classes,sub_c )) )
all_imgs = all_imgs + sub_files
sub_labels = list( np.zeros( len(sub_files) ) +indexer )
#print( len(sub_labels) )
labels = labels + sub_labels
dicts[sub_c] = indexer
indexer +=1
ids = np.array(range(len(labels)))
random.shuffle(ids)
shuffled_labels = np.array(labels)[ids]
shuffled_files = np.array(all_imgs)[ids]
categories = to_categorical(range(n_classes)).astype(np.int16)#[ [1 , 0, 0 , 0 , 0 , 0] , [0 , 1, 0 , 0 , 0 , 0] , [0 , 0, 1 , 0 , 0 , 0] , [0 , 0, 0 , 1 , 0 , 0] , [0 , 0, 0 , 0 , 1 , 0] , [0 , 0, 0 , 0 , 0 , 1] ]
ret_x= np.zeros((batchsize, height,width, 3)).astype(np.int16)
ret_y= np.zeros((batchsize, n_classes)).astype(np.int16)
batchcount = 0
while True:
for i in range(len(shuffled_files)):
row = shuffled_files[i]
#print(row)
###img = cv2.imread(row, 0)
###img= resize_image (img, height, width)
###img = img.astype(np.uint16)
###ret_x[batchcount, :,:,0] = img[:,:]
###ret_x[batchcount, :,:,1] = img[:,:]
###ret_x[batchcount, :,:,2] = img[:,:]
img = cv2.imread(row)
img= resize_image (img, height, width)
img = img.astype(np.uint16)
ret_x[batchcount, :,:,:] = img[:,:,:]
#print(int(shuffled_labels[i]) )
#print( categories[int(shuffled_labels[i])] )
ret_y[batchcount, :] = categories[ int( shuffled_labels[i] ) ][:]
batchcount+=1
if batchcount>=batchsize:
ret_x = ret_x/255.
yield (ret_x, ret_y)
ret_x= np.zeros((batchsize, height,width, 3)).astype(np.int16)
ret_y= np.zeros((batchsize, n_classes)).astype(np.int16)
batchcount = 0
def do_brightening(img_in_dir, factor):
im = Image.open(img_in_dir)

Loading…
Cancel
Save