visulizing textline detection from eynollah page-xml output

pull/23/head
vahidrezanezhad 2 weeks ago
parent d554d26739
commit fc75770b73

@ -2,6 +2,7 @@ import click
import json
from gt_gen_utils import *
from tqdm import tqdm
from pathlib import Path
@click.group()
def main():
@ -331,6 +332,53 @@ def visualize_reading_order(dir_xml, dir_out, dir_imgs):
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), img)
@main.command()
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-do",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_imgs",
"-dimg",
help="directory of images where textline segmentation will be overlayed", )
def visualize_textline_segmentation(dir_xml, dir_out, dir_imgs):
xml_files_ind = os.listdir(dir_xml)
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name)
img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format))
co_tetxlines, y_len, x_len = get_textline_contours_for_visualization(xml_file)
img_total = np.zeros((y_len, x_len, 3))
for cont in co_tetxlines:
img_in = np.zeros((y_len, x_len, 3))
img_in = cv2.fillPoly(img_in, pts =[cont], color=(1,1,1))
img_total = img_total + img_in
img_total[:,:, 0][img_total[:,:, 0]>2] = 2
img_out, _ = visualize_model_output(img_total, img, task="textline")
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), img_out)
if __name__ == "__main__":
main()

@ -16,6 +16,52 @@ KERNEL = np.ones((5, 5), np.uint8)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
def visualize_model_output(prediction, img, task):
if task == "binarization":
prediction = prediction * -1
prediction = prediction + 1
added_image = prediction * 255
layout_only = None
else:
unique_classes = np.unique(prediction[:,:,0])
rgb_colors = {'0' : [255, 255, 255],
'1' : [255, 0, 0],
'2' : [255, 125, 0],
'3' : [255, 0, 125],
'4' : [125, 125, 125],
'5' : [125, 125, 0],
'6' : [0, 125, 255],
'7' : [0, 125, 0],
'8' : [125, 125, 125],
'9' : [0, 125, 255],
'10' : [125, 0, 125],
'11' : [0, 255, 0],
'12' : [0, 0, 255],
'13' : [0, 255, 255],
'14' : [255, 125, 125],
'15' : [255, 0, 255]}
layout_only = np.zeros(prediction.shape)
for unq_class in unique_classes:
rgb_class_unique = rgb_colors[str(int(unq_class))]
layout_only[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0]
layout_only[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
layout_only[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
img = resize_image(img, layout_only.shape[0], layout_only.shape[1])
layout_only = layout_only.astype(np.int32)
img = img.astype(np.int32)
added_image = cv2.addWeighted(img,0.5,layout_only,0.1,0)
return added_image, layout_only
def get_content_of_dir(dir_in):
"""
Listing all ground truth page xml files. All files are needed to have xml format.
@ -138,6 +184,48 @@ def update_region_contours(co_text, img_boundary, erosion_rate, dilation_rate, y
img_boundary[:,:][boundary[:,:]==1] =1
return co_text_eroded, img_boundary
def get_textline_contours_for_visualization(xml_file):
tree1 = ET.parse(xml_file, parser = ET.XMLParser(encoding = 'iso-8859-5'))
root1=tree1.getroot()
alltags=[elem.tag for elem in root1.iter()]
link=alltags[0].split('}')[0]+'}'
for jj in root1.iter(link+'Page'):
y_len=int(jj.attrib['imageHeight'])
x_len=int(jj.attrib['imageWidth'])
region_tags = np.unique([x for x in alltags if x.endswith('TextLine')])
tag_endings = ['}TextLine','}textline']
co_use_case = []
for tag in region_tags:
if tag.endswith(tag_endings[0]) or tag.endswith(tag_endings[1]):
for nn in root1.iter(tag):
c_t_in = []
sumi = 0
for vv in nn.iter():
if vv.tag == link + 'Coords':
coords = bool(vv.attrib)
if coords:
p_h = vv.attrib['points'].split(' ')
c_t_in.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
break
else:
pass
if vv.tag == link + 'Point':
c_t_in.append([int(float(vv.attrib['x'])), int(float(vv.attrib['y']))])
sumi += 1
elif vv.tag != link + 'Point' and sumi >= 1:
break
co_use_case.append(np.array(c_t_in))
return co_use_case, y_len, x_len
def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_file, config_params, printspace, dir_images, dir_out_images):
"""
Reading the page xml files and write the ground truth images into given output directory.

Loading…
Cancel
Save