from tensorflow.keras import backend as K import tensorflow as tf import numpy as np def focal_loss(gamma=2., alpha=4.): gamma = float(gamma) alpha = float(alpha) def focal_loss_fixed(y_true, y_pred): """Focal loss for multi-classification FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t) Notice: y_pred is probability after softmax gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x) Focal Loss for Dense Object Detection https://arxiv.org/abs/1708.02002 Arguments: y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls] y_pred {tensor} -- model's output, shape of [batch_size, num_cls] Keyword Arguments: gamma {float} -- (default: {2.0}) alpha {float} -- (default: {4.0}) Returns: [tensor] -- loss. """ epsilon = 1.e-9 y_true = tf.convert_to_tensor(y_true, tf.float32) y_pred = tf.convert_to_tensor(y_pred, tf.float32) model_out = tf.add(y_pred, epsilon) ce = tf.multiply(y_true, -tf.log(model_out)) weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma)) fl = tf.multiply(alpha, tf.multiply(weight, ce)) reduced_fl = tf.reduce_max(fl, axis=1) return tf.reduce_mean(reduced_fl) return focal_loss_fixed def weighted_categorical_crossentropy(weights=None): """ weighted_categorical_crossentropy Args: * weights: crossentropy weights Returns: * weighted categorical crossentropy function """ def loss(y_true, y_pred): labels_floats = tf.cast(y_true, tf.float32) per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred) if weights is not None: weight_mask = tf.maximum(tf.reduce_max(tf.constant( np.array(weights, dtype=np.float32)[None, None, None]) * labels_floats, axis=-1), 1.0) per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None] return tf.reduce_mean(per_pixel_loss) return loss def image_categorical_cross_entropy(y_true, y_pred, weights=None): """ :param y_true: tensor of shape (batch_size, height, width) representing the ground truth. :param y_pred: tensor of shape (batch_size, height, width) representing the prediction. :return: The mean cross-entropy on softmaxed tensors. """ labels_floats = tf.cast(y_true, tf.float32) per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred) if weights is not None: weight_mask = tf.maximum( tf.reduce_max(tf.constant( np.array(weights, dtype=np.float32)[None, None, None]) * labels_floats, axis=-1), 1.0) per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None] return tf.reduce_mean(per_pixel_loss) def class_tversky(y_true, y_pred): smooth = 1.0 # 1.00 y_true = K.permute_dimensions(y_true, (3, 1, 2, 0)) y_pred = K.permute_dimensions(y_pred, (3, 1, 2, 0)) y_true_pos = K.batch_flatten(y_true) y_pred_pos = K.batch_flatten(y_pred) true_pos = K.sum(y_true_pos * y_pred_pos, 1) false_neg = K.sum(y_true_pos * (1 - y_pred_pos), 1) false_pos = K.sum((1 - y_true_pos) * y_pred_pos, 1) alpha = 0.2 # 0.5 beta = 0.8 return (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth) def focal_tversky_loss(y_true, y_pred): pt_1 = class_tversky(y_true, y_pred) gamma = 1.3 # 4./3.0#1.3#4.0/3.00# 0.75 return K.sum(K.pow((1 - pt_1), gamma)) def generalized_dice_coeff2(y_true, y_pred): n_el = 1 for dim in y_true.shape: n_el *= int(dim) n_cl = y_true.shape[-1] w = K.zeros(shape=(n_cl,)) w = (K.sum(y_true, axis=(0, 1, 2))) / n_el w = 1 / (w ** 2 + 0.000001) numerator = y_true * y_pred numerator = w * K.sum(numerator, (0, 1, 2)) numerator = K.sum(numerator) denominator = y_true + y_pred denominator = w * K.sum(denominator, (0, 1, 2)) denominator = K.sum(denominator) return 2 * numerator / denominator def generalized_dice_coeff(y_true, y_pred): axes = tuple(range(1, len(y_pred.shape) - 1)) Ncl = y_pred.shape[-1] w = K.zeros(shape=(Ncl,)) w = K.sum(y_true, axis=axes) w = 1 / (w ** 2 + 0.000001) # Compute gen dice coef: numerator = y_true * y_pred numerator = w * K.sum(numerator, axes) numerator = K.sum(numerator) denominator = y_true + y_pred denominator = w * K.sum(denominator, axes) denominator = K.sum(denominator) gen_dice_coef = 2 * numerator / denominator return gen_dice_coef def generalized_dice_loss(y_true, y_pred): return 1 - generalized_dice_coeff2(y_true, y_pred) def soft_dice_loss(y_true, y_pred, epsilon=1e-6): """ Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions. Assumes the `channels_last` format. # Arguments y_true: b x X x Y( x Z...) x c One hot encoding of ground truth y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax) epsilon: Used for numerical stability to avoid divide by zero errors # References V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation https://arxiv.org/abs/1606.04797 More details on Dice loss formulation https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72) Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022 """ # skip the batch and class axis for calculating Dice score axes = tuple(range(1, len(y_pred.shape) - 1)) numerator = 2. * K.sum(y_pred * y_true, axes) denominator = K.sum(K.square(y_pred) + K.square(y_true), axes) return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last=True, mean_per_class=False, verbose=False): """ Compute mean metrics of two segmentation masks, via Keras. IoU(A,B) = |A & B| / (| A U B|) Dice(A,B) = 2*|A & B| / (|A| + |B|) Args: y_true: true masks, one-hot encoded. y_pred: predicted masks, either softmax outputs, or one-hot encoded. metric_name: metric to be computed, either 'iou' or 'dice'. metric_type: one of 'standard' (default), 'soft', 'naive'. In the standard version, y_pred is one-hot encoded and the mean is taken only over classes that are present (in y_true or y_pred). The 'soft' version of the metrics are computed without one-hot encoding y_pred. The 'naive' version return mean metrics where absent classes contribute to the class mean as 1.0 (instead of being dropped from the mean). drop_last = True: boolean flag to drop last class (usually reserved for background class in semantic segmentation) mean_per_class = False: return mean along batch axis for each class. verbose = False: print intermediate results such as intersection, union (as number of pixels). Returns: IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True in which case it returns the per-class metric, averaged over the batch. Inputs are B*W*H*N tensors, with B = batch size, W = width, H = height, N = number of classes """ flag_soft = (metric_type == 'soft') flag_naive_mean = (metric_type == 'naive') # always assume one or more classes num_classes = K.shape(y_true)[-1] if not flag_soft: # get one-hot encoded masks from y_pred (true masks should already be one-hot) y_pred = K.one_hot(K.argmax(y_pred), num_classes) y_true = K.one_hot(K.argmax(y_true), num_classes) # if already one-hot, could have skipped above command # keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64) y_true = K.cast(y_true, 'float32') y_pred = K.cast(y_pred, 'float32') # intersection and union shapes are batch_size * n_classes (values = area in pixels) axes = (1, 2) # W,H axes of each image intersection = K.sum(K.abs(y_true * y_pred), axis=axes) mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes) union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot smooth = .001 iou = (intersection + smooth) / (union + smooth) dice = 2 * (intersection + smooth) / (mask_sum + smooth) metric = {'iou': iou, 'dice': dice}[metric_name] # define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise mask = K.cast(K.not_equal(union, 0), 'float32') if drop_last: metric = metric[:, :-1] mask = mask[:, :-1] if verbose: print('intersection, union') print(K.eval(intersection), K.eval(union)) print(K.eval(intersection / union)) # return mean metrics: remaining axes are (batch, classes) if flag_naive_mean: return K.mean(metric) # take mean only over non-absent classes class_count = K.sum(mask, axis=0) non_zero = tf.greater(class_count, 0) non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero) non_zero_count = tf.boolean_mask(class_count, non_zero) if verbose: print('Counts of inputs with class present, metrics for non-absent classes') print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count)) return K.mean(non_zero_sum / non_zero_count) def mean_iou(y_true, y_pred, **kwargs): """ Compute mean Intersection over Union of two segmentation masks, via Keras. Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs. """ return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs) def Mean_IOU(y_true, y_pred): nb_classes = K.int_shape(y_pred)[-1] iou = [] true_pixels = K.argmax(y_true, axis=-1) pred_pixels = K.argmax(y_pred, axis=-1) void_labels = K.equal(K.sum(y_true, axis=-1), 0) for i in range(0, nb_classes): # exclude first label (background) and last label (void) true_labels = K.equal(true_pixels, i) # & ~void_labels pred_labels = K.equal(pred_pixels, i) # & ~void_labels inter = tf.to_int32(true_labels & pred_labels) union = tf.to_int32(true_labels | pred_labels) legal_batches = K.sum(tf.to_int32(true_labels), axis=1) > 0 ious = K.sum(inter, axis=1) / K.sum(union, axis=1) iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects iou = tf.stack(iou) legal_labels = ~tf.debugging.is_nan(iou) iou = tf.gather(iou, indices=tf.where(legal_labels)) return K.mean(iou) def iou_vahid(y_true, y_pred): nb_classes = tf.shape(y_true)[-1] + tf.to_int32(1) true_pixels = K.argmax(y_true, axis=-1) pred_pixels = K.argmax(y_pred, axis=-1) iou = [] for i in tf.range(nb_classes): tp = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.equal(pred_pixels, i))) fp = K.sum(tf.to_int32(K.not_equal(true_pixels, i) & K.equal(pred_pixels, i))) fn = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.not_equal(pred_pixels, i))) iouh = tp / (tp + fp + fn) iou.append(iouh) return K.mean(iou) def IoU_metric(Yi, y_predi): # mean Intersection over Union # Mean IoU = TP/(FN + TP + FP) y_predi = np.argmax(y_predi, axis=3) y_testi = np.argmax(Yi, axis=3) IoUs = [] Nclass = int(np.max(Yi)) + 1 for c in range(Nclass): TP = np.sum((Yi == c) & (y_predi == c)) FP = np.sum((Yi != c) & (y_predi == c)) FN = np.sum((Yi == c) & (y_predi != c)) IoU = TP / float(TP + FP + FN) IoUs.append(IoU) return K.cast(np.mean(IoUs), dtype='float32') def IoU_metric_keras(y_true, y_pred): # mean Intersection over Union # Mean IoU = TP/(FN + TP + FP) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess)) def jaccard_distance_loss(y_true, y_pred, smooth=100): """ Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|) = sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|)) The jaccard distance loss is usefull for unbalanced datasets. This has been shifted so it converges on 0 and is smoothed to avoid exploding or disapearing gradient. Ref: https://en.wikipedia.org/wiki/Jaccard_index @url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96 @author: wassname """ intersection = K.sum(K.abs(y_true * y_pred), axis=-1) sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1) jac = (intersection + smooth) / (sum_ - intersection + smooth) return (1 - jac) * smooth