from tensorflow.keras.models import * from tensorflow.keras.layers import * from tensorflow.keras import layers from tensorflow.keras.regularizers import l2 resnet50_Weights_path='./pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' IMAGE_ORDERING ='channels_last' MERGE_AXIS=-1 def one_side_pad( x ): x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x) if IMAGE_ORDERING == 'channels_first': x = Lambda(lambda x : x[: , : , :-1 , :-1 ] )(x) elif IMAGE_ORDERING == 'channels_last': x = Lambda(lambda x : x[: , :-1 , :-1 , : ] )(x) return x def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1) , data_format=IMAGE_ORDERING , name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size , data_format=IMAGE_ORDERING , padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3 , (1, 1), data_format=IMAGE_ORDERING , name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = Activation('relu')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)): """conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. Note that from stage 3, the first conv layer at main path is with strides=(2,2) And the shortcut should have strides=(2,2) as well """ filters1, filters2, filters3 = filters if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1) , data_format=IMAGE_ORDERING , strides=strides, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size , data_format=IMAGE_ORDERING , padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1) , data_format=IMAGE_ORDERING , name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) shortcut = Conv2D(filters3, (1, 1) , data_format=IMAGE_ORDERING , strides=strides, name=conv_name_base + '1')(input_tensor) shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut) x = layers.add([x, shortcut]) x = Activation('relu')(x) return x def resnet50_unet_light(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False): assert input_height%32 == 0 assert input_width%32 == 0 img_input = Input(shape=(input_height,input_width , 3 )) if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input) x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x) f1 = x x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') f2 = one_side_pad(x ) x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') f3 = x x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') f4 = x x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') f5 = x if pretraining: model=Model( img_input , x ).load_weights(resnet50_Weights_path) v512_2048 = Conv2D( 512 , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( f5 ) v512_2048 = ( BatchNormalization(axis=bn_axis))(v512_2048) v512_2048 = Activation('relu')(v512_2048) v512_1024=Conv2D( 512 , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( f4 ) v512_1024 = ( BatchNormalization(axis=bn_axis))(v512_1024) v512_1024 = Activation('relu')(v512_1024) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(v512_2048) o = ( concatenate([ o ,v512_1024],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o) o = ( Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([ o ,f3],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o) o = ( Conv2D( 256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([o,f2],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING))(o) o = ( Conv2D( 128 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay) ) )(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([o,f1],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o) o = ( Conv2D( 64 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([o,img_input],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o) o = ( Conv2D( 32 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = Conv2D( n_classes , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( o ) o = ( BatchNormalization(axis=bn_axis))(o) o = (Activation('softmax'))(o) model = Model( img_input , o ) return model def resnet50_unet(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False): assert input_height%32 == 0 assert input_width%32 == 0 img_input = Input(shape=(input_height,input_width , 3 )) if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input) x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x) f1 = x x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') f2 = one_side_pad(x ) x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') f3 = x x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') f4 = x x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') f5 = x if pretraining: Model( img_input , x ).load_weights(resnet50_Weights_path) v1024_2048 = Conv2D( 1024 , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( f5 ) v1024_2048 = ( BatchNormalization(axis=bn_axis))(v1024_2048) v1024_2048 = Activation('relu')(v1024_2048) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(v1024_2048) o = ( concatenate([ o ,f4],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o) o = ( Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([ o ,f3],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D( (1,1), data_format=IMAGE_ORDERING))(o) o = ( Conv2D( 256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([o,f2],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING))(o) o = ( Conv2D( 128 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay) ) )(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([o,f1],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o) o = ( Conv2D( 64 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = ( UpSampling2D( (2,2), data_format=IMAGE_ORDERING))(o) o = ( concatenate([o,img_input],axis=MERGE_AXIS ) ) o = ( ZeroPadding2D((1,1) , data_format=IMAGE_ORDERING ))(o) o = ( Conv2D( 32 , (3, 3), padding='valid' , data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) ))(o) o = ( BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = Conv2D( n_classes , (1, 1) , padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay) )( o ) o = ( BatchNormalization(axis=bn_axis))(o) o = (Activation('softmax'))(o) model = Model( img_input , o ) return model