import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import * from tensorflow.keras.layers import * from tensorflow.keras import layers from tensorflow.keras.regularizers import l2 mlp_head_units = [2048, 1024] #projection_dim = 64 transformer_layers = 8 num_heads = 4 resnet50_Weights_path = './pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' IMAGE_ORDERING = 'channels_last' MERGE_AXIS = -1 def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=tf.nn.gelu)(x) x = layers.Dropout(dropout_rate)(x) return x class Patches(layers.Layer): def __init__(self, patch_size_x, patch_size_y):#__init__(self, **kwargs):#:__init__(self, patch_size):#__init__(self, **kwargs): super(Patches, self).__init__() self.patch_size_x = patch_size_x self.patch_size_y = patch_size_y def call(self, images): #print(tf.shape(images)[1],'images') #print(self.patch_size,'self.patch_size') batch_size = tf.shape(images)[0] patches = tf.image.extract_patches( images=images, sizes=[1, self.patch_size_y, self.patch_size_x, 1], strides=[1, self.patch_size_y, self.patch_size_x, 1], rates=[1, 1, 1, 1], padding="VALID", ) patch_dims = patches.shape[-1] patches = tf.reshape(patches, [batch_size, -1, patch_dims]) return patches def get_config(self): config = super().get_config().copy() config.update({ 'patch_size_x': self.patch_size_x, 'patch_size_y': self.patch_size_y, }) return config class Patches_old(layers.Layer): def __init__(self, patch_size):#__init__(self, **kwargs):#:__init__(self, patch_size):#__init__(self, **kwargs): super(Patches, self).__init__() self.patch_size = patch_size def call(self, images): #print(tf.shape(images)[1],'images') #print(self.patch_size,'self.patch_size') batch_size = tf.shape(images)[0] patches = tf.image.extract_patches( images=images, sizes=[1, self.patch_size, self.patch_size, 1], strides=[1, self.patch_size, self.patch_size, 1], rates=[1, 1, 1, 1], padding="VALID", ) patch_dims = patches.shape[-1] #print(patches.shape,patch_dims,'patch_dims') patches = tf.reshape(patches, [batch_size, -1, patch_dims]) return patches def get_config(self): config = super().get_config().copy() config.update({ 'patch_size': self.patch_size, }) return config class PatchEncoder(layers.Layer): def __init__(self, num_patches, projection_dim): super(PatchEncoder, self).__init__() self.num_patches = num_patches self.projection = layers.Dense(units=projection_dim) self.position_embedding = layers.Embedding( input_dim=num_patches, output_dim=projection_dim ) def call(self, patch): positions = tf.range(start=0, limit=self.num_patches, delta=1) encoded = self.projection(patch) + self.position_embedding(positions) return encoded def get_config(self): config = super().get_config().copy() config.update({ 'num_patches': self.num_patches, 'projection': self.projection, 'position_embedding': self.position_embedding, }) return config def one_side_pad(x): x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x) if IMAGE_ORDERING == 'channels_first': x = Lambda(lambda x: x[:, :, :-1, :-1])(x) elif IMAGE_ORDERING == 'channels_last': x = Lambda(lambda x: x[:, :-1, :-1, :])(x) return x def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = Activation('relu')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)): """conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. Note that from stage 3, the first conv layer at main path is with strides=(2,2) And the shortcut should have strides=(2,2) as well """ filters1, filters2, filters3 = filters if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, strides=strides, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) shortcut = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, strides=strides, name=conv_name_base + '1')(input_tensor) shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut) x = layers.add([x, shortcut]) x = Activation('relu')(x) return x def resnet50_unet_light(n_classes, input_height=224, input_width=224, taks="segmentation", weight_decay=1e-6, pretraining=False): assert input_height % 32 == 0 assert input_width % 32 == 0 img_input = Input(shape=(input_height, input_width, 3)) if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input) x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay), name='conv1')(x) f1 = x x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') f2 = one_side_pad(x) x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') f3 = x x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') f4 = x x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') f5 = x if pretraining: model = Model(img_input, x).load_weights(resnet50_Weights_path) v512_2048 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f5) v512_2048 = (BatchNormalization(axis=bn_axis))(v512_2048) v512_2048 = Activation('relu')(v512_2048) v512_1024 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f4) v512_1024 = (BatchNormalization(axis=bn_axis))(v512_1024) v512_1024 = Activation('relu')(v512_1024) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v512_2048) o = (concatenate([o, v512_1024], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f3], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f2], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f1], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, img_input], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o) if task == "segmentation": o = (BatchNormalization(axis=bn_axis))(o) o = (Activation('softmax'))(o) else: o = (Activation('sigmoid'))(o) model = Model(img_input, o) return model def resnet50_unet(n_classes, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False): assert input_height % 32 == 0 assert input_width % 32 == 0 img_input = Input(shape=(input_height, input_width, 3)) if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input) x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay), name='conv1')(x) f1 = x x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') f2 = one_side_pad(x) x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') f3 = x x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') f4 = x x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') f5 = x if pretraining: Model(img_input, x).load_weights(resnet50_Weights_path) v1024_2048 = Conv2D(1024, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))( f5) v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048) v1024_2048 = Activation('relu')(v1024_2048) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v1024_2048) o = (concatenate([o, f4], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f3], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f2], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f1], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, img_input], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o) if task == "segmentation": o = (BatchNormalization(axis=bn_axis))(o) o = (Activation('softmax'))(o) else: o = (Activation('sigmoid'))(o) model = Model(img_input, o) return model def vit_resnet50_unet(n_classes, patch_size_x, patch_size_y, num_patches, projection_dim = 64, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False): inputs = layers.Input(shape=(input_height, input_width, 3)) transformer_units = [ projection_dim * 2, projection_dim, ] # Size of the transformer layers IMAGE_ORDERING = 'channels_last' bn_axis=3 x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(inputs) x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x) f1 = x x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') f2 = one_side_pad(x) x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') f3 = x x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') f4 = x x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') f5 = x if pretraining: model = Model(inputs, x).load_weights(resnet50_Weights_path) #num_patches = x.shape[1]*x.shape[2] #patch_size_y = input_height / x.shape[1] #patch_size_x = input_width / x.shape[2] #patch_size = patch_size_x * patch_size_y patches = Patches(patch_size_x, patch_size_y)(x) # Encode patches. encoded_patches = PatchEncoder(num_patches, projection_dim)(patches) for _ in range(transformer_layers): # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches) # Create a multi-head attention layer. attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=projection_dim, dropout=0.1 )(x1, x1) # Skip connection 1. x2 = layers.Add()([attention_output, encoded_patches]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=1e-6)(x2) # MLP. x3 = mlp(x3, hidden_units=transformer_units, dropout_rate=0.1) # Skip connection 2. encoded_patches = layers.Add()([x3, x2]) encoded_patches = tf.reshape(encoded_patches, [-1, x.shape[1], x.shape[2] , int( projection_dim / (patch_size_x * patch_size_y) )]) v1024_2048 = Conv2D( 1024 , (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(encoded_patches) v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048) v1024_2048 = Activation('relu')(v1024_2048) o = (UpSampling2D( (2, 2), data_format=IMAGE_ORDERING))(v1024_2048) o = (concatenate([o, f4],axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o ,f3], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f2], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, f1], axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o) o = (concatenate([o, inputs],axis=MERGE_AXIS)) o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o) o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o) o = (BatchNormalization(axis=bn_axis))(o) o = Activation('relu')(o) o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(o) if task == "segmentation": o = (BatchNormalization(axis=bn_axis))(o) o = (Activation('softmax'))(o) else: o = (Activation('sigmoid'))(o) model = Model(inputs=inputs, outputs=o) return model def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False): include_top=True assert input_height%32 == 0 assert input_width%32 == 0 img_input = Input(shape=(input_height,input_width , 3 )) if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input) x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x) f1 = x x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') f2 = one_side_pad(x ) x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') f3 = x x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') f4 = x x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') f5 = x if pretraining: Model(img_input, x).load_weights(resnet50_Weights_path) x = AveragePooling2D((7, 7), name='avg_pool')(x) x = Flatten()(x) ## x = Dense(256, activation='relu', name='fc512')(x) x=Dropout(0.2)(x) ## x = Dense(n_classes, activation='softmax', name='fc1000')(x) model = Model(img_input, x) return model def machine_based_reading_order_model(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False): assert input_height%32 == 0 assert input_width%32 == 0 img_input = Input(shape=(input_height,input_width , 3 )) if IMAGE_ORDERING == 'channels_last': bn_axis = 3 else: bn_axis = 1 x1 = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input) x1 = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x1) x1 = BatchNormalization(axis=bn_axis, name='bn_conv1')(x1) x1 = Activation('relu')(x1) x1 = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x1) x1 = conv_block(x1, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='b') x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='c') x1 = conv_block(x1, 3, [128, 128, 512], stage=3, block='a') x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='b') x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='c') x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='d') x1 = conv_block(x1, 3, [256, 256, 1024], stage=4, block='a') x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='b') x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='c') x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='d') x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='e') x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='f') x1 = conv_block(x1, 3, [512, 512, 2048], stage=5, block='a') x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='b') x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='c') if pretraining: Model(img_input , x1).load_weights(resnet50_Weights_path) x1 = AveragePooling2D((7, 7), name='avg_pool1')(x1) flattened = Flatten()(x1) o = Dense(256, activation='relu', name='fc512')(flattened) o=Dropout(0.2)(o) o = Dense(256, activation='relu', name='fc512a')(o) o=Dropout(0.2)(o) o = Dense(n_classes, activation='sigmoid', name='fc1000')(o) model = Model(img_input , o) return model