import cv2 import os def resize_image(seg_in, input_height, input_width): return cv2.resize(seg_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST) dir_imgs = './training_data_sample_enhancement/images' dir_out_imgs = './training_data_sample_enhancement/images_gt' dir_out_labs = './training_data_sample_enhancement/labels_gt' ls_imgs = os.listdir(dir_imgs) ls_scales = [ 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9] for img in ls_imgs: img_name = img.split('.')[0] img_type = img.split('.')[1] image = cv2.imread(os.path.join(dir_imgs, img)) for i, scale in enumerate(ls_scales): height_sc = int(image.shape[0]*scale) width_sc = int(image.shape[1]*scale) image_down_scaled = resize_image(image, height_sc, width_sc) image_back_to_org_scale = resize_image(image_down_scaled, image.shape[0], image.shape[1]) cv2.imwrite(os.path.join(dir_out_imgs, img_name+'_'+str(i)+'.'+img_type), image_back_to_org_scale) cv2.imwrite(os.path.join(dir_out_labs, img_name+'_'+str(i)+'.'+img_type), image)