You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
498 lines
19 KiB
Python
498 lines
19 KiB
Python
import os
|
|
import cv2
|
|
import numpy as np
|
|
import seaborn as sns
|
|
from scipy.ndimage.interpolation import map_coordinates
|
|
from scipy.ndimage.filters import gaussian_filter
|
|
import random
|
|
from tqdm import tqdm
|
|
import imutils
|
|
import math
|
|
|
|
|
|
|
|
def bluring(img_in,kind):
|
|
if kind=='guass':
|
|
img_blur = cv2.GaussianBlur(img_in,(5,5),0)
|
|
elif kind=="median":
|
|
img_blur = cv2.medianBlur(img_in,5)
|
|
elif kind=='blur':
|
|
img_blur=cv2.blur(img_in,(5,5))
|
|
return img_blur
|
|
|
|
def elastic_transform(image, alpha, sigma,seedj, random_state=None):
|
|
|
|
"""Elastic deformation of images as described in [Simard2003]_.
|
|
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
|
|
Convolutional Neural Networks applied to Visual Document Analysis", in
|
|
Proc. of the International Conference on Document Analysis and
|
|
Recognition, 2003.
|
|
"""
|
|
if random_state is None:
|
|
random_state = np.random.RandomState(seedj)
|
|
|
|
shape = image.shape
|
|
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
|
|
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
|
|
dz = np.zeros_like(dx)
|
|
|
|
x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
|
|
indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1)), np.reshape(z, (-1, 1))
|
|
|
|
distored_image = map_coordinates(image, indices, order=1, mode='reflect')
|
|
return distored_image.reshape(image.shape)
|
|
|
|
def rotation_90(img):
|
|
img_rot=np.zeros((img.shape[1],img.shape[0],img.shape[2]))
|
|
img_rot[:,:,0]=img[:,:,0].T
|
|
img_rot[:,:,1]=img[:,:,1].T
|
|
img_rot[:,:,2]=img[:,:,2].T
|
|
return img_rot
|
|
|
|
def rotatedRectWithMaxArea(w, h, angle):
|
|
"""
|
|
Given a rectangle of size wxh that has been rotated by 'angle' (in
|
|
radians), computes the width and height of the largest possible
|
|
axis-aligned rectangle (maximal area) within the rotated rectangle.
|
|
"""
|
|
if w <= 0 or h <= 0:
|
|
return 0,0
|
|
|
|
width_is_longer = w >= h
|
|
side_long, side_short = (w,h) if width_is_longer else (h,w)
|
|
|
|
# since the solutions for angle, -angle and 180-angle are all the same,
|
|
# if suffices to look at the first quadrant and the absolute values of sin,cos:
|
|
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
|
|
if side_short <= 2.*sin_a*cos_a*side_long or abs(sin_a-cos_a) < 1e-10:
|
|
# half constrained case: two crop corners touch the longer side,
|
|
# the other two corners are on the mid-line parallel to the longer line
|
|
x = 0.5*side_short
|
|
wr,hr = (x/sin_a,x/cos_a) if width_is_longer else (x/cos_a,x/sin_a)
|
|
else:
|
|
# fully constrained case: crop touches all 4 sides
|
|
cos_2a = cos_a*cos_a - sin_a*sin_a
|
|
wr,hr = (w*cos_a - h*sin_a)/cos_2a, (h*cos_a - w*sin_a)/cos_2a
|
|
|
|
return wr,hr
|
|
|
|
def rotate_max_area(image,rotated, rotated_label,angle):
|
|
""" image: cv2 image matrix object
|
|
angle: in degree
|
|
"""
|
|
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0],
|
|
math.radians(angle))
|
|
h, w, _ = rotated.shape
|
|
y1 = h//2 - int(hr/2)
|
|
y2 = y1 + int(hr)
|
|
x1 = w//2 - int(wr/2)
|
|
x2 = x1 + int(wr)
|
|
return rotated[y1:y2, x1:x2],rotated_label[y1:y2, x1:x2]
|
|
def rotation_not_90_func(img,label,thetha):
|
|
rotated=imutils.rotate(img,thetha)
|
|
rotated_label=imutils.rotate(label,thetha)
|
|
return rotate_max_area(img, rotated,rotated_label,thetha)
|
|
|
|
def color_images(seg, n_classes):
|
|
ann_u=range(n_classes)
|
|
if len(np.shape(seg))==3:
|
|
seg=seg[:,:,0]
|
|
|
|
seg_img=np.zeros((np.shape(seg)[0],np.shape(seg)[1],3)).astype(float)
|
|
colors=sns.color_palette("hls", n_classes)
|
|
|
|
for c in ann_u:
|
|
c=int(c)
|
|
segl=(seg==c)
|
|
seg_img[:,:,0]+=segl*(colors[c][0])
|
|
seg_img[:,:,1]+=segl*(colors[c][1])
|
|
seg_img[:,:,2]+=segl*(colors[c][2])
|
|
return seg_img
|
|
|
|
|
|
def resize_image(seg_in,input_height,input_width):
|
|
return cv2.resize(seg_in,(input_width,input_height),interpolation=cv2.INTER_NEAREST)
|
|
def get_one_hot(seg,input_height,input_width,n_classes):
|
|
seg=seg[:,:,0]
|
|
seg_f=np.zeros((input_height, input_width,n_classes))
|
|
for j in range(n_classes):
|
|
seg_f[:,:,j]=(seg==j).astype(int)
|
|
return seg_f
|
|
|
|
|
|
def IoU(Yi,y_predi):
|
|
## mean Intersection over Union
|
|
## Mean IoU = TP/(FN + TP + FP)
|
|
|
|
IoUs = []
|
|
classes_true=np.unique(Yi)
|
|
for c in classes_true:
|
|
TP = np.sum( (Yi == c)&(y_predi==c) )
|
|
FP = np.sum( (Yi != c)&(y_predi==c) )
|
|
FN = np.sum( (Yi == c)&(y_predi != c))
|
|
IoU = TP/float(TP + FP + FN)
|
|
print("class {:02.0f}: #TP={:6.0f}, #FP={:6.0f}, #FN={:5.0f}, IoU={:4.3f}".format(c,TP,FP,FN,IoU))
|
|
IoUs.append(IoU)
|
|
mIoU = np.mean(IoUs)
|
|
print("_________________")
|
|
print("Mean IoU: {:4.3f}".format(mIoU))
|
|
return mIoU
|
|
def data_gen(img_folder, mask_folder, batch_size,input_height, input_width,n_classes):
|
|
c = 0
|
|
n = [f for f in os.listdir(img_folder) if not f.startswith('.')]# os.listdir(img_folder) #List of training images
|
|
random.shuffle(n)
|
|
while True:
|
|
img = np.zeros((batch_size, input_height, input_width, 3)).astype('float')
|
|
mask = np.zeros((batch_size, input_height, input_width, n_classes)).astype('float')
|
|
|
|
for i in range(c, c+batch_size): #initially from 0 to 16, c = 0.
|
|
#print(img_folder+'/'+n[i])
|
|
|
|
try:
|
|
filename=n[i].split('.')[0]
|
|
|
|
train_img = cv2.imread(img_folder+'/'+n[i])/255.
|
|
train_img = cv2.resize(train_img, (input_width, input_height),interpolation=cv2.INTER_NEAREST)# Read an image from folder and resize
|
|
|
|
img[i-c] = train_img #add to array - img[0], img[1], and so on.
|
|
train_mask = cv2.imread(mask_folder+'/'+filename+'.png')
|
|
#print(mask_folder+'/'+filename+'.png')
|
|
#print(train_mask.shape)
|
|
train_mask = get_one_hot( resize_image(train_mask,input_height,input_width),input_height,input_width,n_classes)
|
|
#train_mask = train_mask.reshape(224, 224, 1) # Add extra dimension for parity with train_img size [512 * 512 * 3]
|
|
|
|
mask[i-c] = train_mask
|
|
except:
|
|
img[i-c] = np.ones((input_height, input_width, 3)).astype('float')
|
|
mask[i-c] = np.zeros((input_height, input_width, n_classes)).astype('float')
|
|
|
|
|
|
|
|
c+=batch_size
|
|
if(c+batch_size>=len(os.listdir(img_folder))):
|
|
c=0
|
|
random.shuffle(n)
|
|
yield img, mask
|
|
|
|
def otsu_copy(img):
|
|
img_r=np.zeros(img.shape)
|
|
img1=img[:,:,0]
|
|
img2=img[:,:,1]
|
|
img3=img[:,:,2]
|
|
_, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
_, threshold2 = cv2.threshold(img2, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
_, threshold3 = cv2.threshold(img3, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
img_r[:,:,0]=threshold1
|
|
img_r[:,:,1]=threshold1
|
|
img_r[:,:,2]=threshold1
|
|
return img_r
|
|
def get_patches(dir_img_f,dir_seg_f,img,label,height,width,indexer):
|
|
|
|
if img.shape[0]<height or img.shape[1]<width:
|
|
img,label=do_padding(img,label,height,width)
|
|
|
|
img_h=img.shape[0]
|
|
img_w=img.shape[1]
|
|
|
|
nxf=img_w/float(width)
|
|
nyf=img_h/float(height)
|
|
|
|
if nxf>int(nxf):
|
|
nxf=int(nxf)+1
|
|
if nyf>int(nyf):
|
|
nyf=int(nyf)+1
|
|
|
|
nxf=int(nxf)
|
|
nyf=int(nyf)
|
|
|
|
for i in range(nxf):
|
|
for j in range(nyf):
|
|
index_x_d=i*width
|
|
index_x_u=(i+1)*width
|
|
|
|
index_y_d=j*height
|
|
index_y_u=(j+1)*height
|
|
|
|
if index_x_u>img_w:
|
|
index_x_u=img_w
|
|
index_x_d=img_w-width
|
|
if index_y_u>img_h:
|
|
index_y_u=img_h
|
|
index_y_d=img_h-height
|
|
|
|
|
|
img_patch=img[index_y_d:index_y_u,index_x_d:index_x_u,:]
|
|
label_patch=label[index_y_d:index_y_u,index_x_d:index_x_u,:]
|
|
|
|
cv2.imwrite(dir_img_f+'/img_'+str(indexer)+'.png', img_patch )
|
|
cv2.imwrite(dir_seg_f+'/img_'+str(indexer)+'.png' , label_patch )
|
|
indexer+=1
|
|
|
|
return indexer
|
|
|
|
def do_padding(img,label,height,width):
|
|
|
|
height_new=img.shape[0]
|
|
width_new=img.shape[1]
|
|
|
|
h_start=0
|
|
w_start=0
|
|
|
|
if img.shape[0]<height:
|
|
h_start=int( abs(height-img.shape[0])/2. )
|
|
height_new=height
|
|
|
|
if img.shape[1]<width:
|
|
w_start=int( abs(width-img.shape[1])/2. )
|
|
width_new=width
|
|
|
|
img_new=np.ones((height_new,width_new,img.shape[2])).astype(float)*255
|
|
label_new=np.zeros((height_new,width_new,label.shape[2])).astype(float)
|
|
|
|
img_new[h_start:h_start+img.shape[0],w_start:w_start+img.shape[1],:]=np.copy(img[:,:,:])
|
|
label_new[h_start:h_start+label.shape[0],w_start:w_start+label.shape[1],:]=np.copy(label[:,:,:])
|
|
|
|
return img_new,label_new
|
|
|
|
|
|
def get_patches_num_scale(dir_img_f,dir_seg_f,img,label,height,width,indexer,n_patches,scaler):
|
|
|
|
|
|
if img.shape[0]<height or img.shape[1]<width:
|
|
img,label=do_padding(img,label,height,width)
|
|
|
|
img_h=img.shape[0]
|
|
img_w=img.shape[1]
|
|
|
|
height_scale=int(height*scaler)
|
|
width_scale=int(width*scaler)
|
|
|
|
|
|
nxf=img_w/float(width_scale)
|
|
nyf=img_h/float(height_scale)
|
|
|
|
if nxf>int(nxf):
|
|
nxf=int(nxf)+1
|
|
if nyf>int(nyf):
|
|
nyf=int(nyf)+1
|
|
|
|
nxf=int(nxf)
|
|
nyf=int(nyf)
|
|
|
|
for i in range(nxf):
|
|
for j in range(nyf):
|
|
index_x_d=i*width_scale
|
|
index_x_u=(i+1)*width_scale
|
|
|
|
index_y_d=j*height_scale
|
|
index_y_u=(j+1)*height_scale
|
|
|
|
if index_x_u>img_w:
|
|
index_x_u=img_w
|
|
index_x_d=img_w-width_scale
|
|
if index_y_u>img_h:
|
|
index_y_u=img_h
|
|
index_y_d=img_h-height_scale
|
|
|
|
|
|
img_patch=img[index_y_d:index_y_u,index_x_d:index_x_u,:]
|
|
label_patch=label[index_y_d:index_y_u,index_x_d:index_x_u,:]
|
|
|
|
img_patch=resize_image(img_patch,height,width)
|
|
label_patch=resize_image(label_patch,height,width)
|
|
|
|
cv2.imwrite(dir_img_f+'/img_'+str(indexer)+'.png', img_patch )
|
|
cv2.imwrite(dir_seg_f+'/img_'+str(indexer)+'.png' , label_patch )
|
|
indexer+=1
|
|
|
|
return indexer
|
|
|
|
def get_patches_num_scale_new(dir_img_f,dir_seg_f,img,label,height,width,indexer,scaler):
|
|
img=resize_image(img,int(img.shape[0]*scaler),int(img.shape[1]*scaler))
|
|
label=resize_image(label,int(label.shape[0]*scaler),int(label.shape[1]*scaler))
|
|
|
|
if img.shape[0]<height or img.shape[1]<width:
|
|
img,label=do_padding(img,label,height,width)
|
|
|
|
img_h=img.shape[0]
|
|
img_w=img.shape[1]
|
|
|
|
height_scale=int(height*1)
|
|
width_scale=int(width*1)
|
|
|
|
|
|
nxf=img_w/float(width_scale)
|
|
nyf=img_h/float(height_scale)
|
|
|
|
if nxf>int(nxf):
|
|
nxf=int(nxf)+1
|
|
if nyf>int(nyf):
|
|
nyf=int(nyf)+1
|
|
|
|
nxf=int(nxf)
|
|
nyf=int(nyf)
|
|
|
|
for i in range(nxf):
|
|
for j in range(nyf):
|
|
index_x_d=i*width_scale
|
|
index_x_u=(i+1)*width_scale
|
|
|
|
index_y_d=j*height_scale
|
|
index_y_u=(j+1)*height_scale
|
|
|
|
if index_x_u>img_w:
|
|
index_x_u=img_w
|
|
index_x_d=img_w-width_scale
|
|
if index_y_u>img_h:
|
|
index_y_u=img_h
|
|
index_y_d=img_h-height_scale
|
|
|
|
|
|
img_patch=img[index_y_d:index_y_u,index_x_d:index_x_u,:]
|
|
label_patch=label[index_y_d:index_y_u,index_x_d:index_x_u,:]
|
|
|
|
#img_patch=resize_image(img_patch,height,width)
|
|
#label_patch=resize_image(label_patch,height,width)
|
|
|
|
cv2.imwrite(dir_img_f+'/img_'+str(indexer)+'.png', img_patch )
|
|
cv2.imwrite(dir_seg_f+'/img_'+str(indexer)+'.png' , label_patch )
|
|
indexer+=1
|
|
|
|
return indexer
|
|
|
|
|
|
def provide_patches(dir_img,dir_seg,dir_flow_train_imgs,
|
|
dir_flow_train_labels,
|
|
input_height,input_width,blur_k,blur_aug,
|
|
flip_aug,binarization,scaling,scales,flip_index,
|
|
scaling_bluring,scaling_binarization,rotation,
|
|
rotation_not_90,thetha,scaling_flip,
|
|
augmentation=False,patches=False):
|
|
|
|
imgs_cv_train=np.array(os.listdir(dir_img))
|
|
segs_cv_train=np.array(os.listdir(dir_seg))
|
|
|
|
indexer=0
|
|
for im, seg_i in tqdm(zip(imgs_cv_train,segs_cv_train)):
|
|
img_name=im.split('.')[0]
|
|
if not patches:
|
|
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png', resize_image(cv2.imread(dir_img+'/'+im),input_height,input_width ) )
|
|
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png' , resize_image(cv2.imread(dir_seg+'/'+img_name+'.png'),input_height,input_width ) )
|
|
indexer+=1
|
|
|
|
if augmentation:
|
|
if flip_aug:
|
|
for f_i in flip_index:
|
|
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png',
|
|
resize_image(cv2.flip(cv2.imread(dir_img+'/'+im),f_i),input_height,input_width) )
|
|
|
|
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png' ,
|
|
resize_image(cv2.flip(cv2.imread(dir_seg+'/'+img_name+'.png'),f_i),input_height,input_width) )
|
|
indexer+=1
|
|
|
|
if blur_aug:
|
|
for blur_i in blur_k:
|
|
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png',
|
|
(resize_image(bluring(cv2.imread(dir_img+'/'+im),blur_i),input_height,input_width) ) )
|
|
|
|
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png' ,
|
|
resize_image(cv2.imread(dir_seg+'/'+img_name+'.png'),input_height,input_width) )
|
|
indexer+=1
|
|
|
|
|
|
if binarization:
|
|
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png',
|
|
resize_image(otsu_copy( cv2.imread(dir_img+'/'+im)),input_height,input_width ))
|
|
|
|
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png',
|
|
resize_image( cv2.imread(dir_seg+'/'+img_name+'.png'),input_height,input_width ))
|
|
indexer+=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if patches:
|
|
|
|
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
|
|
cv2.imread(dir_img+'/'+im),cv2.imread(dir_seg+'/'+img_name+'.png'),
|
|
input_height,input_width,indexer=indexer)
|
|
|
|
if augmentation:
|
|
|
|
if rotation:
|
|
|
|
|
|
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
|
|
rotation_90( cv2.imread(dir_img+'/'+im) ),
|
|
rotation_90( cv2.imread(dir_seg+'/'+img_name+'.png') ),
|
|
input_height,input_width,indexer=indexer)
|
|
|
|
if rotation_not_90:
|
|
|
|
for thetha_i in thetha:
|
|
img_max_rotated,label_max_rotated=rotation_not_90_func(cv2.imread(dir_img+'/'+im),cv2.imread(dir_seg+'/'+img_name+'.png'),thetha_i)
|
|
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
|
|
img_max_rotated,
|
|
label_max_rotated,
|
|
input_height,input_width,indexer=indexer)
|
|
if flip_aug:
|
|
for f_i in flip_index:
|
|
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
|
|
cv2.flip( cv2.imread(dir_img+'/'+im) , f_i),
|
|
cv2.flip( cv2.imread(dir_seg+'/'+img_name+'.png') ,f_i),
|
|
input_height,input_width,indexer=indexer)
|
|
if blur_aug:
|
|
for blur_i in blur_k:
|
|
|
|
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
|
|
bluring( cv2.imread(dir_img+'/'+im) , blur_i),
|
|
cv2.imread(dir_seg+'/'+img_name+'.png'),
|
|
input_height,input_width,indexer=indexer)
|
|
|
|
|
|
if scaling:
|
|
for sc_ind in scales:
|
|
indexer=get_patches_num_scale_new(dir_flow_train_imgs,dir_flow_train_labels,
|
|
cv2.imread(dir_img+'/'+im) ,
|
|
cv2.imread(dir_seg+'/'+img_name+'.png'),
|
|
input_height,input_width,indexer=indexer,scaler=sc_ind)
|
|
if binarization:
|
|
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
|
|
otsu_copy( cv2.imread(dir_img+'/'+im)),
|
|
cv2.imread(dir_seg+'/'+img_name+'.png'),
|
|
input_height,input_width,indexer=indexer)
|
|
|
|
|
|
|
|
if scaling_bluring:
|
|
for sc_ind in scales:
|
|
for blur_i in blur_k:
|
|
indexer=get_patches_num_scale_new(dir_flow_train_imgs,dir_flow_train_labels,
|
|
bluring( cv2.imread(dir_img+'/'+im) , blur_i) ,
|
|
cv2.imread(dir_seg+'/'+img_name+'.png') ,
|
|
input_height,input_width,indexer=indexer,scaler=sc_ind)
|
|
|
|
if scaling_binarization:
|
|
for sc_ind in scales:
|
|
indexer=get_patches_num_scale_new(dir_flow_train_imgs,dir_flow_train_labels,
|
|
otsu_copy( cv2.imread(dir_img+'/'+im)) ,
|
|
cv2.imread(dir_seg+'/'+img_name+'.png'),
|
|
input_height,input_width,indexer=indexer,scaler=sc_ind)
|
|
|
|
if scaling_flip:
|
|
for sc_ind in scales:
|
|
for f_i in flip_index:
|
|
indexer=get_patches_num_scale_new(dir_flow_train_imgs,dir_flow_train_labels,
|
|
cv2.flip( cv2.imread(dir_img+'/'+im) , f_i) ,
|
|
cv2.flip(cv2.imread(dir_seg+'/'+img_name+'.png') ,f_i) ,
|
|
input_height,input_width,indexer=indexer,scaler=sc_ind)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|