You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
7.2 KiB
Python
193 lines
7.2 KiB
Python
import os
|
|
import sys
|
|
import tensorflow as tf
|
|
from keras.backend.tensorflow_backend import set_session
|
|
import keras , warnings
|
|
from keras.optimizers import *
|
|
from sacred import Experiment
|
|
from models import *
|
|
from utils import *
|
|
from metrics import *
|
|
|
|
|
|
def configuration():
|
|
keras.backend.clear_session()
|
|
tf.reset_default_graph()
|
|
warnings.filterwarnings('ignore')
|
|
|
|
os.environ['CUDA_DEVICE_ORDER']='PCI_BUS_ID'
|
|
config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)
|
|
|
|
|
|
config.gpu_options.allow_growth = True
|
|
config.gpu_options.per_process_gpu_memory_fraction=0.95#0.95
|
|
config.gpu_options.visible_device_list="0"
|
|
set_session(tf.Session(config=config))
|
|
|
|
def get_dirs_or_files(input_data):
|
|
if os.path.isdir(input_data):
|
|
image_input, labels_input = os.path.join(input_data, 'images/'), os.path.join(input_data, 'labels/')
|
|
# Check if training dir exists
|
|
assert os.path.isdir(image_input), "{} is not a directory".format(image_input)
|
|
assert os.path.isdir(labels_input), "{} is not a directory".format(labels_input)
|
|
return image_input, labels_input
|
|
|
|
ex = Experiment()
|
|
|
|
@ex.config
|
|
def config_params():
|
|
n_classes=None # Number of classes. If your case study is binary case the set it to 2 and otherwise give your number of cases.
|
|
n_epochs=1
|
|
input_height=224*1
|
|
input_width=224*1
|
|
weight_decay=1e-6 # Weight decay of l2 regularization of model layers.
|
|
n_batch=1 # Number of batches at each iteration.
|
|
learning_rate=1e-4
|
|
patches=False # Make patches of image in order to use all information of image. In the case of page
|
|
# extraction this should be set to false since model should see all image.
|
|
augmentation=False
|
|
flip_aug=False # Flip image (augmentation).
|
|
elastic_aug=False # Elastic transformation (augmentation).
|
|
blur_aug=False # Blur patches of image (augmentation).
|
|
scaling=False # Scaling of patches (augmentation) will be imposed if this set to true.
|
|
binarization=False # Otsu thresholding. Used for augmentation in the case of binary case like textline prediction. For multicases should not be applied.
|
|
dir_train=None # Directory of training dataset (sub-folders should be named images and labels).
|
|
dir_eval=None # Directory of validation dataset (sub-folders should be named images and labels).
|
|
dir_output=None # Directory of output where the model should be saved.
|
|
pretraining=False # Set true to load pretrained weights of resnet50 encoder.
|
|
weighted_loss=False # Set True if classes are unbalanced and you want to use weighted loss function.
|
|
scaling_bluring=False
|
|
rotation: False
|
|
scaling_binarization=False
|
|
blur_k=['blur','guass','median'] # Used in order to blur image. Used for augmentation.
|
|
scales=[0.9 , 1.1 ] # Scale patches with these scales. Used for augmentation.
|
|
flip_index=[0,1] # Flip image. Used for augmentation.
|
|
|
|
|
|
@ex.automain
|
|
def run(n_classes,n_epochs,input_height,
|
|
input_width,weight_decay,weighted_loss,
|
|
n_batch,patches,augmentation,flip_aug,blur_aug,scaling, binarization,
|
|
blur_k,scales,dir_train,
|
|
scaling_bluring,scaling_binarization,rotation,
|
|
flip_index,dir_eval ,dir_output,pretraining,learning_rate):
|
|
|
|
dir_img,dir_seg=get_dirs_or_files(dir_train)
|
|
dir_img_val,dir_seg_val=get_dirs_or_files(dir_eval)
|
|
|
|
# make first a directory in output for both training and evaluations in order to flow data from these directories.
|
|
dir_train_flowing=os.path.join(dir_output,'train')
|
|
dir_eval_flowing=os.path.join(dir_output,'eval')
|
|
|
|
dir_flow_train_imgs=os.path.join(dir_train_flowing,'images')
|
|
dir_flow_train_labels=os.path.join(dir_train_flowing,'labels')
|
|
|
|
dir_flow_eval_imgs=os.path.join(dir_eval_flowing,'images')
|
|
dir_flow_eval_labels=os.path.join(dir_eval_flowing,'labels')
|
|
|
|
if os.path.isdir(dir_train_flowing):
|
|
os.system('rm -rf '+dir_train_flowing)
|
|
os.makedirs(dir_train_flowing)
|
|
else:
|
|
os.makedirs(dir_train_flowing)
|
|
|
|
if os.path.isdir(dir_eval_flowing):
|
|
os.system('rm -rf '+dir_eval_flowing)
|
|
os.makedirs(dir_eval_flowing)
|
|
else:
|
|
os.makedirs(dir_eval_flowing)
|
|
|
|
|
|
os.mkdir(dir_flow_train_imgs)
|
|
os.mkdir(dir_flow_train_labels)
|
|
|
|
os.mkdir(dir_flow_eval_imgs)
|
|
os.mkdir(dir_flow_eval_labels)
|
|
|
|
|
|
|
|
#set the gpu configuration
|
|
configuration()
|
|
|
|
|
|
#writing patches into a sub-folder in order to be flowed from directory.
|
|
provide_patches(dir_img,dir_seg,dir_flow_train_imgs,
|
|
dir_flow_train_labels,
|
|
input_height,input_width,blur_k,blur_aug,
|
|
flip_aug,binarization,scaling,scales,flip_index,
|
|
scaling_bluring,scaling_binarization,rotation,
|
|
augmentation=augmentation,patches=patches)
|
|
|
|
provide_patches(dir_img_val,dir_seg_val,dir_flow_eval_imgs,
|
|
dir_flow_eval_labels,
|
|
input_height,input_width,blur_k,blur_aug,
|
|
flip_aug,binarization,scaling,scales,flip_index,
|
|
scaling_bluring,scaling_binarization,rotation,
|
|
augmentation=False,patches=patches)
|
|
|
|
if weighted_loss:
|
|
weights=np.zeros(n_classes)
|
|
for obj in os.listdir(dir_seg):
|
|
label_obj=cv2.imread(dir_seg+'/'+obj)
|
|
label_obj_one_hot=get_one_hot( label_obj,label_obj.shape[0],label_obj.shape[1],n_classes)
|
|
weights+=(label_obj_one_hot.sum(axis=0)).sum(axis=0)
|
|
|
|
|
|
weights=1.00/weights
|
|
|
|
weights=weights/float(np.sum(weights))
|
|
weights=weights/float(np.min(weights))
|
|
weights=weights/float(np.sum(weights))
|
|
|
|
|
|
|
|
|
|
#get our model.
|
|
model = resnet50_unet(n_classes, input_height, input_width,weight_decay,pretraining)
|
|
|
|
#if you want to see the model structure just uncomment model summary.
|
|
#model.summary()
|
|
|
|
|
|
if not weighted_loss:
|
|
model.compile(loss='categorical_crossentropy',
|
|
optimizer = Adam(lr=learning_rate),metrics=['accuracy'])
|
|
if weighted_loss:
|
|
model.compile(loss=weighted_categorical_crossentropy(weights),
|
|
optimizer = Adam(lr=learning_rate),metrics=['accuracy'])
|
|
|
|
mc = keras.callbacks.ModelCheckpoint('weights{epoch:08d}.h5',
|
|
save_weights_only=True, period=1)
|
|
|
|
|
|
#generating train and evaluation data
|
|
train_gen = data_gen(dir_flow_train_imgs,dir_flow_train_labels, batch_size = n_batch,
|
|
input_height=input_height, input_width=input_width,n_classes=n_classes )
|
|
val_gen = data_gen(dir_flow_eval_imgs,dir_flow_eval_labels, batch_size = n_batch,
|
|
input_height=input_height, input_width=input_width,n_classes=n_classes )
|
|
|
|
|
|
model.fit_generator(
|
|
train_gen,
|
|
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs))/n_batch),
|
|
validation_data=val_gen,
|
|
validation_steps=1,
|
|
epochs=n_epochs)
|
|
|
|
|
|
|
|
os.system('rm -rf '+dir_train_flowing)
|
|
os.system('rm -rf '+dir_eval_flowing)
|
|
|
|
model.save(dir_output+'/'+'model'+'.h5')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|