You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sbb_pixelwise_segmentation/utils.py

337 lines
13 KiB
Python

import os
import cv2
import numpy as np
import seaborn as sns
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import random
from tqdm import tqdm
def bluring(img_in,kind):
if kind=='guass':
img_blur = cv2.GaussianBlur(img_in,(5,5),0)
elif kind=="median":
img_blur = cv2.medianBlur(img_in,5)
elif kind=='blur':
img_blur=cv2.blur(img_in,(5,5))
return img_blur
def color_images(seg, n_classes):
ann_u=range(n_classes)
if len(np.shape(seg))==3:
seg=seg[:,:,0]
seg_img=np.zeros((np.shape(seg)[0],np.shape(seg)[1],3)).astype(float)
colors=sns.color_palette("hls", n_classes)
for c in ann_u:
c=int(c)
segl=(seg==c)
seg_img[:,:,0]+=segl*(colors[c][0])
seg_img[:,:,1]+=segl*(colors[c][1])
seg_img[:,:,2]+=segl*(colors[c][2])
return seg_img
def resize_image(seg_in,input_height,input_width):
return cv2.resize(seg_in,(input_width,input_height),interpolation=cv2.INTER_NEAREST)
def get_one_hot(seg,input_height,input_width,n_classes):
seg=seg[:,:,0]
seg_f=np.zeros((input_height, input_width,n_classes))
for j in range(n_classes):
seg_f[:,:,j]=(seg==j).astype(int)
return seg_f
def IoU(Yi,y_predi):
## mean Intersection over Union
## Mean IoU = TP/(FN + TP + FP)
IoUs = []
classes_true=np.unique(Yi)
for c in classes_true:
TP = np.sum( (Yi == c)&(y_predi==c) )
FP = np.sum( (Yi != c)&(y_predi==c) )
FN = np.sum( (Yi == c)&(y_predi != c))
IoU = TP/float(TP + FP + FN)
print("class {:02.0f}: #TP={:6.0f}, #FP={:6.0f}, #FN={:5.0f}, IoU={:4.3f}".format(c,TP,FP,FN,IoU))
IoUs.append(IoU)
mIoU = np.mean(IoUs)
print("_________________")
print("Mean IoU: {:4.3f}".format(mIoU))
return mIoU
def data_gen(img_folder, mask_folder, batch_size,input_height, input_width,n_classes):
c = 0
n = os.listdir(img_folder) #List of training images
random.shuffle(n)
while True:
img = np.zeros((batch_size, input_height, input_width, 3)).astype('float')
mask = np.zeros((batch_size, input_height, input_width, n_classes)).astype('float')
for i in range(c, c+batch_size): #initially from 0 to 16, c = 0.
#print(img_folder+'/'+n[i])
filename=n[i].split('.')[0]
train_img = cv2.imread(img_folder+'/'+n[i])/255.
train_img = cv2.resize(train_img, (input_width, input_height),interpolation=cv2.INTER_NEAREST)# Read an image from folder and resize
img[i-c] = train_img #add to array - img[0], img[1], and so on.
train_mask = cv2.imread(mask_folder+'/'+filename+'.png')
#print(mask_folder+'/'+filename+'.png')
#print(train_mask.shape)
train_mask = get_one_hot( resize_image(train_mask,input_height,input_width),input_height,input_width,n_classes)
#train_mask = train_mask.reshape(224, 224, 1) # Add extra dimension for parity with train_img size [512 * 512 * 3]
mask[i-c] = train_mask
c+=batch_size
if(c+batch_size>=len(os.listdir(img_folder))):
c=0
random.shuffle(n)
yield img, mask
def otsu_copy(img):
img_r=np.zeros(img.shape)
img1=img[:,:,0]
img2=img[:,:,1]
img3=img[:,:,2]
_, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold2 = cv2.threshold(img2, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold3 = cv2.threshold(img3, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
img_r[:,:,0]=threshold1
img_r[:,:,1]=threshold1
img_r[:,:,2]=threshold1
return img_r
def rotation_90(img):
img_rot=np.zeros((img.shape[1],img.shape[0],img.shape[2]))
img_rot[:,:,0]=img[:,:,0].T
img_rot[:,:,1]=img[:,:,1].T
img_rot[:,:,2]=img[:,:,2].T
return img_rot
def get_patches(dir_img_f,dir_seg_f,img,label,height,width,indexer):
img_h=img.shape[0]
img_w=img.shape[1]
nxf=img_w/float(width)
nyf=img_h/float(height)
if nxf>int(nxf):
nxf=int(nxf)+1
if nyf>int(nyf):
nyf=int(nyf)+1
nxf=int(nxf)
nyf=int(nyf)
for i in range(nxf):
for j in range(nyf):
index_x_d=i*width
index_x_u=(i+1)*width
index_y_d=j*height
index_y_u=(j+1)*height
if index_x_u>img_w:
index_x_u=img_w
index_x_d=img_w-width
if index_y_u>img_h:
index_y_u=img_h
index_y_d=img_h-height
img_patch=img[index_y_d:index_y_u,index_x_d:index_x_u,:]
label_patch=label[index_y_d:index_y_u,index_x_d:index_x_u,:]
cv2.imwrite(dir_img_f+'/img_'+str(indexer)+'.png', img_patch )
cv2.imwrite(dir_seg_f+'/img_'+str(indexer)+'.png' , label_patch )
indexer+=1
return indexer
def get_patches_num_scale(dir_img_f,dir_seg_f,img,label,height,width,indexer,scaler):
img_h=img.shape[0]
img_w=img.shape[1]
height_scale=int(height*scaler)
width_scale=int(width*scaler)
nxf=img_w/float(width_scale)
nyf=img_h/float(height_scale)
if nxf>int(nxf):
nxf=int(nxf)+1
if nyf>int(nyf):
nyf=int(nyf)+1
nxf=int(nxf)
nyf=int(nyf)
for i in range(nxf):
for j in range(nyf):
index_x_d=i*width_scale
index_x_u=(i+1)*width_scale
index_y_d=j*height_scale
index_y_u=(j+1)*height_scale
if index_x_u>img_w:
index_x_u=img_w
index_x_d=img_w-width_scale
if index_y_u>img_h:
index_y_u=img_h
index_y_d=img_h-height_scale
img_patch=img[index_y_d:index_y_u,index_x_d:index_x_u,:]
label_patch=label[index_y_d:index_y_u,index_x_d:index_x_u,:]
img_patch=resize_image(img_patch,height,width)
label_patch=resize_image(label_patch,height,width)
cv2.imwrite(dir_img_f+'/img_'+str(indexer)+'.png', img_patch )
cv2.imwrite(dir_seg_f+'/img_'+str(indexer)+'.png' , label_patch )
indexer+=1
return indexer
def provide_patches(dir_img,dir_seg,dir_flow_train_imgs,
dir_flow_train_labels,
input_height,input_width,blur_k,blur_aug,
flip_aug,binarization,scaling,scales,flip_index,
scaling_bluring,scaling_binarization,rotation,
augmentation=False,patches=False):
imgs_cv_train=np.array(os.listdir(dir_img))
segs_cv_train=np.array(os.listdir(dir_seg))
indexer=0
for im, seg_i in tqdm(zip(imgs_cv_train,segs_cv_train)):
img_name=im.split('.')[0]
if not patches:
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png', resize_image(cv2.imread(dir_img+'/'+im),input_height,input_width ) )
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png' , resize_image(cv2.imread(dir_seg+'/'+img_name+'.png'),input_height,input_width ) )
indexer+=1
if augmentation:
if rotation:
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png',
rotation_90( resize_image(cv2.imread(dir_img+'/'+im),
input_height,input_width) ) )
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png',
rotation_90 ( resize_image(cv2.imread(dir_seg+'/'+img_name+'.png'),
input_height,input_width) ) )
indexer+=1
if flip_aug:
for f_i in flip_index:
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png',
resize_image(cv2.flip(cv2.imread(dir_img+'/'+im),f_i),input_height,input_width) )
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png' ,
resize_image(cv2.flip(cv2.imread(dir_seg+'/'+img_name+'.png'),f_i),input_height,input_width) )
indexer+=1
if blur_aug:
for blur_i in blur_k:
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png',
(resize_image(bluring(cv2.imread(dir_img+'/'+im),blur_i),input_height,input_width) ) )
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png' ,
resize_image(cv2.imread(dir_seg+'/'+img_name+'.png'),input_height,input_width) )
indexer+=1
if binarization:
cv2.imwrite(dir_flow_train_imgs+'/img_'+str(indexer)+'.png',
resize_image(otsu_copy( cv2.imread(dir_img+'/'+im)),input_height,input_width ))
cv2.imwrite(dir_flow_train_labels+'/img_'+str(indexer)+'.png',
resize_image( cv2.imread(dir_seg+'/'+img_name+'.png'),input_height,input_width ))
indexer+=1
if patches:
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
cv2.imread(dir_img+'/'+im),cv2.imread(dir_seg+'/'+img_name+'.png'),
input_height,input_width,indexer=indexer)
if augmentation:
if rotation:
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
rotation_90( cv2.imread(dir_img+'/'+im) ),
rotation_90( cv2.imread(dir_seg+'/'+img_name+'.png') ),
input_height,input_width,indexer=indexer)
if flip_aug:
for f_i in flip_index:
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
cv2.flip( cv2.imread(dir_img+'/'+im) , f_i),
cv2.flip( cv2.imread(dir_seg+'/'+img_name+'.png') ,f_i),
input_height,input_width,indexer=indexer)
if blur_aug:
for blur_i in blur_k:
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
bluring( cv2.imread(dir_img+'/'+im) , blur_i),
cv2.imread(dir_seg+'/'+img_name+'.png'),
input_height,input_width,indexer=indexer)
if scaling:
for sc_ind in scales:
indexer=get_patches_num_scale(dir_flow_train_imgs,dir_flow_train_labels,
cv2.imread(dir_img+'/'+im) ,
cv2.imread(dir_seg+'/'+img_name+'.png'),
input_height,input_width,indexer=indexer,scaler=sc_ind)
if binarization:
indexer=get_patches(dir_flow_train_imgs,dir_flow_train_labels,
otsu_copy( cv2.imread(dir_img+'/'+im)),
cv2.imread(dir_seg+'/'+img_name+'.png'),
input_height,input_width,indexer=indexer)
if scaling_bluring:
for sc_ind in scales:
for blur_i in blur_k:
indexer=get_patches_num_scale(dir_flow_train_imgs,dir_flow_train_labels,
bluring( cv2.imread(dir_img+'/'+im) , blur_i) ,
cv2.imread(dir_seg+'/'+img_name+'.png') ,
input_height,input_width,indexer=indexer,scaler=sc_ind)
if scaling_binarization:
for sc_ind in scales:
indexer=get_patches_num_scale(dir_flow_train_imgs,dir_flow_train_labels,
otsu_copy( cv2.imread(dir_img+'/'+im)) ,
cv2.imread(dir_seg+'/'+img_name+'.png'),
input_height,input_width,indexer=indexer,scaler=sc_ind)