|
|
@ -51,7 +51,7 @@ class textlineerkenner:
|
|
|
|
self.f_name = self.f_name.split('.')[0]
|
|
|
|
self.f_name = self.f_name.split('.')[0]
|
|
|
|
self.dir_models = dir_models
|
|
|
|
self.dir_models = dir_models
|
|
|
|
self.kernel = np.ones((5, 5), np.uint8)
|
|
|
|
self.kernel = np.ones((5, 5), np.uint8)
|
|
|
|
self.model_page_dir = dir_models + '/model_page.h5'
|
|
|
|
self.model_page_dir = dir_models + '/model_page_new.h5'
|
|
|
|
self.model_region_dir = dir_models + '/model_strukturerkennung.h5'
|
|
|
|
self.model_region_dir = dir_models + '/model_strukturerkennung.h5'
|
|
|
|
self.model_textline_dir = dir_models + '/model_textline.h5'
|
|
|
|
self.model_textline_dir = dir_models + '/model_textline.h5'
|
|
|
|
|
|
|
|
|
|
|
@ -199,20 +199,32 @@ class textlineerkenner:
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
|
|
|
|
|
|
|
|
elif self.image.shape[0] < 2000 and self.image.shape[0] >= 1000:
|
|
|
|
elif self.image.shape[0] < 2000 and self.image.shape[0] >= 1000:
|
|
|
|
self.img_hight_int = 3500
|
|
|
|
self.img_hight_int = int(self.image.shape[0]*1.1)
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
|
|
|
|
|
|
|
|
elif self.image.shape[0] < 3000 and self.image.shape[0] >= 2000:
|
|
|
|
elif self.image.shape[0] < 3300 and self.image.shape[0] >= 2000:
|
|
|
|
self.img_hight_int = 5500
|
|
|
|
self.img_hight_int = int(self.image.shape[0]*1.1)
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
|
|
|
|
|
|
|
|
elif self.image.shape[0] < 4000 and self.image.shape[0] >= 3000:
|
|
|
|
elif self.image.shape[0] < 4000 and self.image.shape[0] >= 3300 and self.image.shape[1]<2400 :
|
|
|
|
|
|
|
|
self.img_hight_int = int(self.image.shape[0]*1.1)# 6500
|
|
|
|
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif self.image.shape[0] < 4000 and self.image.shape[0] >= 3300 and self.image.shape[1]>=2400 :
|
|
|
|
self.img_hight_int = 6500
|
|
|
|
self.img_hight_int = 6500
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif self.image.shape[0] < 5400 and self.image.shape[0] > 4000 and self.image.shape[1]>3300 :
|
|
|
|
|
|
|
|
self.img_hight_int = int(self.image.shape[0]*1.6)# 6500
|
|
|
|
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
|
|
|
|
elif self.image.shape[0] < 11000 and self.image.shape[0] >= 7000 :
|
|
|
|
|
|
|
|
self.img_hight_int = int(self.image.shape[0]*1.6)# 6500
|
|
|
|
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
self.img_hight_int = self.image.shape[0]
|
|
|
|
self.img_hight_int = int(self.image.shape[0]*1.1)# 6500
|
|
|
|
self.img_width_int = self.image.shape[1]
|
|
|
|
self.img_width_int = int(self.img_hight_int * self.image.shape[1] / float(self.image.shape[0]))
|
|
|
|
|
|
|
|
#self.img_hight_int = self.image.shape[0]
|
|
|
|
|
|
|
|
#self.img_width_int = self.image.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
self.scale_y = self.img_hight_int / float(self.image.shape[0])
|
|
|
|
self.scale_y = self.img_hight_int / float(self.image.shape[0])
|
|
|
|
self.scale_x = self.img_width_int / float(self.image.shape[1])
|
|
|
|
self.scale_x = self.img_width_int / float(self.image.shape[1])
|
|
|
@ -391,8 +403,8 @@ class textlineerkenner:
|
|
|
|
patches=False
|
|
|
|
patches=False
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
img = self.otsu_copy(self.image)
|
|
|
|
img = self.otsu_copy(self.image)
|
|
|
|
for ii in range(1):
|
|
|
|
#for ii in range(1):
|
|
|
|
img = cv2.GaussianBlur(img, (15, 15), 0)
|
|
|
|
# img = cv2.GaussianBlur(img, (15, 15), 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_page_prediction=self.do_prediction(patches,img,model_page)
|
|
|
|
img_page_prediction=self.do_prediction(patches,img,model_page)
|
|
|
@ -400,7 +412,7 @@ class textlineerkenner:
|
|
|
|
imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY)
|
|
|
|
imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY)
|
|
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
|
|
|
|
|
|
thresh = cv2.dilate(thresh, self.kernel, iterations=3)
|
|
|
|
thresh = cv2.dilate(thresh, self.kernel, iterations=6)
|
|
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
|
|
|
|
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
|
|
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
|
@ -408,16 +420,28 @@ class textlineerkenner:
|
|
|
|
cnt = contours[np.argmax(cnt_size)]
|
|
|
|
cnt = contours[np.argmax(cnt_size)]
|
|
|
|
|
|
|
|
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt)
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
box = [x, y, w, h]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
croped_page, page_coord = self.crop_image_inside_box(box, self.image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
box = [x, y, w, h]
|
|
|
|
self.cont_page=[]
|
|
|
|
|
|
|
|
self.cont_page.append( np.array( [ [ page_coord[2] , page_coord[0] ] ,
|
|
|
|
|
|
|
|
[ page_coord[3] , page_coord[0] ] ,
|
|
|
|
|
|
|
|
[ page_coord[3] , page_coord[1] ] ,
|
|
|
|
|
|
|
|
[ page_coord[2] , page_coord[1] ]] ) )
|
|
|
|
|
|
|
|
except:
|
|
|
|
|
|
|
|
box = [0, 0, self.image.shape[1]-1, self.image.shape[0]-1]
|
|
|
|
|
|
|
|
croped_page, page_coord = self.crop_image_inside_box(box, self.image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
croped_page, page_coord = self.crop_image_inside_box(box, self.image)
|
|
|
|
self.cont_page=[]
|
|
|
|
|
|
|
|
self.cont_page.append( np.array( [ [ page_coord[2] , page_coord[0] ] ,
|
|
|
|
self.cont_page=[]
|
|
|
|
[ page_coord[3] , page_coord[0] ] ,
|
|
|
|
self.cont_page.append( np.array( [ [ page_coord[2] , page_coord[0] ] ,
|
|
|
|
[ page_coord[3] , page_coord[1] ] ,
|
|
|
|
[ page_coord[3] , page_coord[0] ] ,
|
|
|
|
[ page_coord[2] , page_coord[1] ]] ) )
|
|
|
|
[ page_coord[3] , page_coord[1] ] ,
|
|
|
|
|
|
|
|
[ page_coord[2] , page_coord[1] ]] ) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
session_page.close()
|
|
|
|
session_page.close()
|
|
|
|
del model_page
|
|
|
|
del model_page
|
|
|
@ -437,8 +461,10 @@ class textlineerkenner:
|
|
|
|
img = self.otsu_copy(img)
|
|
|
|
img = self.otsu_copy(img)
|
|
|
|
img = img.astype(np.uint8)
|
|
|
|
img = img.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_regions=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions=self.do_prediction(patches,img,model_region)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
session_region.close()
|
|
|
|
session_region.close()
|
|
|
|
del model_region
|
|
|
|
del model_region
|
|
|
|
del session_region
|
|
|
|
del session_region
|
|
|
@ -505,8 +531,8 @@ class textlineerkenner:
|
|
|
|
self.all_text_region_raw.append(crop_img[:, :, 0])
|
|
|
|
self.all_text_region_raw.append(crop_img[:, :, 0])
|
|
|
|
self.area_of_cropped.append(crop_img.shape[0] * crop_img.shape[1])
|
|
|
|
self.area_of_cropped.append(crop_img.shape[0] * crop_img.shape[1])
|
|
|
|
|
|
|
|
|
|
|
|
def seperate_lines(self, img_path, contour_text_interest, thetha):
|
|
|
|
def seperate_lines(self, img_patch, contour_text_interest, thetha):
|
|
|
|
(h, w) = img_path.shape[:2]
|
|
|
|
(h, w) = img_patch.shape[:2]
|
|
|
|
center = (w // 2, h // 2)
|
|
|
|
center = (w // 2, h // 2)
|
|
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
|
|
x_d = M[0, 2]
|
|
|
|
x_d = M[0, 2]
|
|
|
@ -522,19 +548,19 @@ class textlineerkenner:
|
|
|
|
y_cont = y_cont - np.min(y_cont)
|
|
|
|
y_cont = y_cont - np.min(y_cont)
|
|
|
|
|
|
|
|
|
|
|
|
x_min_cont = 0
|
|
|
|
x_min_cont = 0
|
|
|
|
x_max_cont = img_path.shape[1]
|
|
|
|
x_max_cont = img_patch.shape[1]
|
|
|
|
y_min_cont = 0
|
|
|
|
y_min_cont = 0
|
|
|
|
y_max_cont = img_path.shape[0]
|
|
|
|
y_max_cont = img_patch.shape[0]
|
|
|
|
|
|
|
|
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
|
|
|
|
|
|
|
|
mada_n = img_path.sum(axis=1)
|
|
|
|
textline_patch_sum_along_width = img_patch.sum(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
|
|
|
|
|
|
|
|
y = mada_n[:] # [first_nonzero:last_nonzero]
|
|
|
|
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
|
|
|
|
y_help = np.zeros(len(y) + 40)
|
|
|
|
y_padded = np.zeros(len(y) + 40)
|
|
|
|
y_help[20:len(y) + 20] = y
|
|
|
|
y_padded[20:len(y) + 20] = y
|
|
|
|
x = np.array(range(len(y)))
|
|
|
|
x = np.array(range(len(y)))
|
|
|
|
|
|
|
|
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
|
@ -544,14 +570,20 @@ class textlineerkenner:
|
|
|
|
sigma_gaus=8
|
|
|
|
sigma_gaus=8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
z= gaussian_filter1d(y_help, sigma_gaus)
|
|
|
|
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
|
|
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
y_padded_up_to_down=-y_padded+np.max(y_padded)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
|
|
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
|
|
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
|
|
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
|
|
|
|
zneg= gaussian_filter1d(zneg, sigma_gaus)
|
|
|
|
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
|
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
|
|
|
|
|
|
|
|
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
|
|
|
|
|
|
|
|
peaks_values=y_padded_smoothed[peaks]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks_neg = peaks_neg - 20 - 20
|
|
|
|
peaks_neg = peaks_neg - 20 - 20
|
|
|
|
peaks = peaks - 20
|
|
|
|
peaks = peaks - 20
|
|
|
@ -568,21 +600,40 @@ class textlineerkenner:
|
|
|
|
textline_boxes_rot = []
|
|
|
|
textline_boxes_rot = []
|
|
|
|
|
|
|
|
|
|
|
|
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
|
|
|
|
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
|
|
|
|
|
|
|
|
#print('11')
|
|
|
|
for jj in range(len(peaks)):
|
|
|
|
for jj in range(len(peaks)):
|
|
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
|
|
|
|
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if jj==(len(peaks)-1):
|
|
|
|
|
|
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
|
|
|
|
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
|
|
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
|
|
|
|
|
|
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
|
|
|
|
|
|
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
|
|
|
|
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
|
|
|
|
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
|
|
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
|
|
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
|
|
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
|
|
|
|
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
|
|
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
|
|
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
|
|
|
|
|
|
|
|
|
|
if point_down >= img_path.shape[0]:
|
|
|
|
|
|
|
|
point_down = img_path.shape[0] - 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if point_down_narrow >= img_path.shape[0]:
|
|
|
|
|
|
|
|
point_down_narrow = img_path.shape[0] - 2
|
|
|
|
if point_down_narrow >= img_patch.shape[0]:
|
|
|
|
|
|
|
|
point_down_narrow = img_patch.shape[0] - 2
|
|
|
|
|
|
|
|
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
|
|
for mj in range(len(xv))]
|
|
|
|
for mj in range(len(xv))]
|
|
|
@ -672,15 +723,15 @@ class textlineerkenner:
|
|
|
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
|
|
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
|
|
|
for jj in range(len(peaks)):
|
|
|
|
for jj in range(len(peaks)):
|
|
|
|
if jj == 0:
|
|
|
|
if jj == 0:
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
|
|
point_up = 0#peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
|
|
|
|
if point_up < 0:
|
|
|
|
if point_up < 0:
|
|
|
|
point_up = 1
|
|
|
|
point_up = 1
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next)
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
|
|
elif jj == 1:
|
|
|
|
elif jj == 1:
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next)
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
|
|
if point_down >= img_path.shape[0]:
|
|
|
|
if point_down >= img_patch.shape[0]:
|
|
|
|
point_down = img_path.shape[0] - 2
|
|
|
|
point_down = img_patch.shape[0] - 2
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
|
|
|
|
|
|
|
|
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
|
|
for mj in range(len(xv))]
|
|
|
|
for mj in range(len(xv))]
|
|
|
@ -692,8 +743,8 @@ class textlineerkenner:
|
|
|
|
x_min = x_min_cont
|
|
|
|
x_min = x_min_cont
|
|
|
|
x_max = x_max_cont
|
|
|
|
x_max = x_max_cont
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
|
|
x_min = np.min(xvinside)
|
|
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
x_max = np.max(xvinside)
|
|
|
|
|
|
|
|
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
|
@ -737,9 +788,9 @@ class textlineerkenner:
|
|
|
|
elif jj == len(peaks) - 1:
|
|
|
|
elif jj == len(peaks) - 1:
|
|
|
|
dis_to_next = peaks[jj] - peaks[jj - 1]
|
|
|
|
dis_to_next = peaks[jj] - peaks[jj - 1]
|
|
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next)
|
|
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.7 * dis_to_next)
|
|
|
|
if point_down >= img_path.shape[0]:
|
|
|
|
if point_down >= img_patch.shape[0]:
|
|
|
|
point_down = img_path.shape[0] - 2
|
|
|
|
point_down = img_patch.shape[0] - 2
|
|
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
@ -858,65 +909,7 @@ class textlineerkenner:
|
|
|
|
|
|
|
|
|
|
|
|
return contours_rotated_clean
|
|
|
|
return contours_rotated_clean
|
|
|
|
|
|
|
|
|
|
|
|
def textline_contours_to_get_slope_correctly(self, textline_mask, img_patch, contour_interest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slope_new = 0 # deskew_images(img_patch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask = textline_mask.astype(np.uint8)
|
|
|
|
|
|
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_OPEN, self.kernel)
|
|
|
|
|
|
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, self.kernel)
|
|
|
|
|
|
|
|
textline_mask = cv2.erode(textline_mask, self.kernel, iterations=1)
|
|
|
|
|
|
|
|
imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, self.kernel)
|
|
|
|
|
|
|
|
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, self.kernel)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
contours, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main_contours = self.filter_contours_area_of_image(thresh, contours, hirarchy, max_area=1, min_area=0.003)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_maskt = textline_mask[:, :, 0]
|
|
|
|
|
|
|
|
textline_maskt[textline_maskt != 0] = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks_point, _ = self.seperate_lines(textline_maskt, contour_interest, slope_new)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mean_dis = np.mean(np.diff(peaks_point))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
len_x = thresh.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slope_lines = []
|
|
|
|
|
|
|
|
contours_slope_new = []
|
|
|
|
|
|
|
|
for kk in range(len(main_contours)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xminh = np.min(main_contours[kk][:, 0])
|
|
|
|
|
|
|
|
xmaxh = np.max(main_contours[kk][:, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yminh = np.min(main_contours[kk][:, 1])
|
|
|
|
|
|
|
|
ymaxh = np.max(main_contours[kk][:, 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ymaxh - yminh <= mean_dis and (
|
|
|
|
|
|
|
|
xmaxh - xminh) >= 0.3 * len_x: # xminh>=0.05*len_x and xminh<=0.4*len_x and xmaxh<=0.95*len_x and xmaxh>=0.6*len_x:
|
|
|
|
|
|
|
|
contours_slope_new.append(main_contours[kk])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rows, cols = thresh.shape[:2]
|
|
|
|
|
|
|
|
[vx, vy, x, y] = cv2.fitLine(main_contours[kk], cv2.DIST_L2, 0, 0.01, 0.01)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slope_lines.append((vy / vx) / np.pi * 180)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(slope_lines) >= 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slope = np.mean(slope_lines) # slope_true/np.pi*180
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
slope = 999
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
slope = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return slope
|
|
|
|
|
|
|
|
def return_contours_of_image(self,image_box_tabels_1):
|
|
|
|
def return_contours_of_image(self,image_box_tabels_1):
|
|
|
|
|
|
|
|
|
|
|
|
image_box_tabels=np.repeat(image_box_tabels_1[:, :, np.newaxis], 3, axis=2)
|
|
|
|
image_box_tabels=np.repeat(image_box_tabels_1[:, :, np.newaxis], 3, axis=2)
|
|
|
@ -935,18 +928,18 @@ class textlineerkenner:
|
|
|
|
def isNaN(self,num):
|
|
|
|
def isNaN(self,num):
|
|
|
|
return num != num
|
|
|
|
return num != num
|
|
|
|
|
|
|
|
|
|
|
|
def find_num_col(self,regions_without_seperators,sigma_,multiplier=3.8 ):
|
|
|
|
def get_standard_deviation_of_summed_textline_patch_along_width(self,img_patch,sigma_,multiplier=3.8 ):
|
|
|
|
regions_without_seperators_0=regions_without_seperators[:,:].sum(axis=1)
|
|
|
|
img_patch_sum_along_width=img_patch[:,:].sum(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
meda_n_updown=regions_without_seperators_0[len(regions_without_seperators_0)::-1]
|
|
|
|
img_patch_sum_along_width_updown=img_patch_sum_along_width[len(img_patch_sum_along_width)::-1]
|
|
|
|
|
|
|
|
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(regions_without_seperators_0) if x), 0))
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(img_patch_sum_along_width) if x), 0))
|
|
|
|
last_nonzero=(next((i for i, x in enumerate(meda_n_updown) if x), 0))
|
|
|
|
last_nonzero=(next((i for i, x in enumerate(img_patch_sum_along_width_updown) if x), 0))
|
|
|
|
|
|
|
|
|
|
|
|
last_nonzero=len(regions_without_seperators_0)-last_nonzero
|
|
|
|
last_nonzero=len(img_patch_sum_along_width)-last_nonzero
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y=regions_without_seperators_0#[first_nonzero:last_nonzero]
|
|
|
|
y=img_patch_sum_along_width#[first_nonzero:last_nonzero]
|
|
|
|
|
|
|
|
|
|
|
|
y_help=np.zeros(len(y)+20)
|
|
|
|
y_help=np.zeros(len(y)+20)
|
|
|
|
|
|
|
|
|
|
|
@ -971,152 +964,127 @@ class textlineerkenner:
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
|
|
|
|
|
|
|
|
peaks_neg=peaks_neg-10-10
|
|
|
|
peaks_neg=peaks_neg-10-10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
last_nonzero=last_nonzero-0#100
|
|
|
|
|
|
|
|
first_nonzero=first_nonzero+0#+100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
interest_pos=z[peaks]
|
|
|
|
interest_pos=z[peaks]
|
|
|
|
|
|
|
|
|
|
|
|
interest_pos=interest_pos[interest_pos>10]
|
|
|
|
interest_pos=interest_pos[interest_pos>10]
|
|
|
|
|
|
|
|
|
|
|
|
interest_neg=z[peaks_neg]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if interest_neg[0]<0.1:
|
|
|
|
|
|
|
|
interest_neg=interest_neg[1:]
|
|
|
|
|
|
|
|
if interest_neg[len(interest_neg)-1]<0.1:
|
|
|
|
|
|
|
|
interest_neg=interest_neg[:len(interest_neg)-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
interest_neg=z[peaks_neg]
|
|
|
|
|
|
|
|
|
|
|
|
min_peaks_pos=np.min(interest_pos)
|
|
|
|
min_peaks_pos=np.mean(interest_pos)
|
|
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
|
|
|
|
|
|
#print(interest_pos)
|
|
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
|
|
|
|
|
|
|
|
interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
peaks_neg_fin=peaks_neg#[(interest_neg<grenze)]
|
|
|
|
peaks_neg_fin=peaks_neg[(interest_neg<grenze)]
|
|
|
|
interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
|
|
|
|
|
|
|
|
num_col=(len(interest_neg_fin))+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p_l=0
|
|
|
|
|
|
|
|
p_u=len(y)-1
|
|
|
|
|
|
|
|
p_m=int(len(y)/2.)
|
|
|
|
|
|
|
|
p_g_l=int(len(y)/3.)
|
|
|
|
|
|
|
|
p_g_u=len(y)-int(len(y)/3.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return interest_neg_fin,np.std(z)
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg_fin) )
|
|
|
|
|
|
|
|
diff_peaks_annormal=diff_peaks[diff_peaks<30]
|
|
|
|
def return_deskew_slope(self,img_patch,sigma_des):
|
|
|
|
|
|
|
|
img_patch_copy=np.zeros((img_patch.shape[0],img_patch.shape[1]))
|
|
|
|
|
|
|
|
img_patch_copy[:,:]=img_patch[:,:]#img_patch_org[:,:,0]
|
|
|
|
return interest_neg_fin
|
|
|
|
|
|
|
|
def return_deskew_slop(self,img_patch_org,sigma_des):
|
|
|
|
|
|
|
|
img_int=np.zeros((img_patch_org.shape[0],img_patch_org.shape[1]))
|
|
|
|
|
|
|
|
img_int[:,:]=img_patch_org[:,:]#img_patch_org[:,:,0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_resized=np.zeros((int( img_int.shape[0]*(1.2) ) , int( img_int.shape[1]*(1.2) ) ))
|
|
|
|
img_patch_padded=np.zeros((int( img_patch_copy.shape[0]*(1.2) ) , int( img_patch_copy.shape[1]*(2.6) ) ))
|
|
|
|
|
|
|
|
|
|
|
|
img_resized[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(.1)):int( img_int.shape[1]*(.1))+img_int.shape[1] ]=img_int[:,:]
|
|
|
|
img_patch_padded[ int( img_patch_copy.shape[0]*(.1)):int( img_patch_copy.shape[0]*(.1))+img_patch_copy.shape[0] , int( img_patch_copy.shape[1]*(.8)):int( img_patch_copy.shape[1]*(.8))+img_patch_copy.shape[1] ]=img_patch_copy[:,:]
|
|
|
|
angels=np.linspace(-4,4,60)
|
|
|
|
angles=np.linspace(-12,12,40)
|
|
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
res=[]
|
|
|
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
index_cor=[]
|
|
|
|
index_cor=[]
|
|
|
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
indexer=0
|
|
|
|
for rot in angels:
|
|
|
|
for rot in angles:
|
|
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
|
|
img_rotated=self.rotate_image(img_patch_padded,rot)
|
|
|
|
img_rot[img_rot!=0]=1
|
|
|
|
img_rotated[img_rotated!=0]=1
|
|
|
|
res_me=np.mean(self.find_num_col(img_rot,sigma_des,200.3 ))
|
|
|
|
try:
|
|
|
|
|
|
|
|
neg_peaks,var_spectrum=self.get_standard_deviation_of_summed_textline_patch_along_width(img_rotated,sigma_des,20.3 )
|
|
|
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
|
|
|
if res_me==0:
|
|
|
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
|
|
|
except:
|
|
|
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
|
|
|
res_num=0
|
|
|
|
|
|
|
|
var_spectrum=0
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
pass
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
res.append( res_me )
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
index_cor.append(indexer)
|
|
|
|
index_cor.append(indexer)
|
|
|
|
indexer=indexer+1
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res=np.array(res)
|
|
|
|
try:
|
|
|
|
arg_int=np.argmin(res)
|
|
|
|
var_res=np.array(var_res)
|
|
|
|
arg_fin=index_cor[arg_int]
|
|
|
|
|
|
|
|
ang_int=angels[arg_fin]
|
|
|
|
ang_int=angles[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
|
|
|
|
|
|
except:
|
|
|
|
img_rot=self.rotate_image(img_resized,ang_int)
|
|
|
|
ang_int=0
|
|
|
|
img_rot[img_rot!=0]=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return ang_int
|
|
|
|
return ang_int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def do_work_of_slopes(self,queue_of_slopes_per_textregion,queue_of_textlines_rectangle_per_textregion
|
|
|
|
|
|
|
|
,queue_of_textregion_box,boxes_per_process,queue_of_quntours_of_textregion,textline_mask_tot,contours_per_process):
|
|
|
|
|
|
|
|
|
|
|
|
def do_work_of_slopes(self,q,poly,box_sub,boxes_per_process,contours_sub,textline_mask_tot,contours_per_process):
|
|
|
|
slopes_per_each_subprocess = []
|
|
|
|
slope_biggest=0
|
|
|
|
bounding_box_of_textregion_per_each_subprocess=[]
|
|
|
|
slopes_sub = []
|
|
|
|
textlines_rectangles_per_each_subprocess=[]
|
|
|
|
boxes_sub_new=[]
|
|
|
|
contours_textregion_per_each_subprocess=[]
|
|
|
|
poly_sub=[]
|
|
|
|
|
|
|
|
contours_sub_per_p=[]
|
|
|
|
|
|
|
|
for mv in range(len(boxes_per_process)):
|
|
|
|
for mv in range(len(boxes_per_process)):
|
|
|
|
|
|
|
|
|
|
|
|
contours_sub_per_p.append(contours_per_process[mv])
|
|
|
|
contours_textregion_per_each_subprocess.append(contours_per_process[mv])
|
|
|
|
crop_img, _ = self.crop_image_inside_box(boxes_per_process[mv],
|
|
|
|
crop_img, _ = self.crop_image_inside_box(boxes_per_process[mv],
|
|
|
|
np.repeat(textline_mask_tot[:, :, np.newaxis], 3, axis=2))
|
|
|
|
np.repeat(textline_mask_tot[:, :, np.newaxis], 3, axis=2))
|
|
|
|
crop_img=crop_img[:,:,0]
|
|
|
|
crop_img=crop_img[:,:,0]
|
|
|
|
crop_img=cv2.erode(crop_img,self.kernel,iterations = 2)
|
|
|
|
crop_img=cv2.erode(crop_img,self.kernel,iterations = 2)
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
textline_con,hierachy=self.return_contours_of_image(crop_img)
|
|
|
|
sigma_des=2
|
|
|
|
textline_con_fil=self.filter_contours_area_of_image(crop_img,textline_con,hierachy,max_area=1,min_area=0.0008)
|
|
|
|
slope_corresponding_textregion=self.return_deskew_slope(crop_img,sigma_des)
|
|
|
|
y_diff_mean=self.find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sigma_des=int( y_diff_mean * (4./40.0) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if sigma_des<1:
|
|
|
|
|
|
|
|
sigma_des=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
crop_img[crop_img>0]=1
|
|
|
|
|
|
|
|
slope_corresponding_textregion=self.return_deskew_slop(crop_img,sigma_des)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
except:
|
|
|
|
except:
|
|
|
|
slope_corresponding_textregion=999
|
|
|
|
slope_corresponding_textregion=999
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_corresponding_textregion)>12.5 and slope_corresponding_textregion!=999:
|
|
|
|
if np.abs(slope_corresponding_textregion)>12.5 and slope_corresponding_textregion!=999:
|
|
|
|
slope_corresponding_textregion=slope_biggest
|
|
|
|
slope_corresponding_textregion=0
|
|
|
|
elif slope_corresponding_textregion==999:
|
|
|
|
elif slope_corresponding_textregion==999:
|
|
|
|
slope_corresponding_textregion=slope_biggest
|
|
|
|
slope_corresponding_textregion=0
|
|
|
|
slopes_sub.append(slope_corresponding_textregion)
|
|
|
|
slopes_per_each_subprocess.append(slope_corresponding_textregion)
|
|
|
|
|
|
|
|
|
|
|
|
cnt_clean_rot = self.textline_contours_postprocessing(crop_img
|
|
|
|
bounding_rectangle_of_textlines = self.textline_contours_postprocessing(crop_img
|
|
|
|
, slope_corresponding_textregion,
|
|
|
|
, slope_corresponding_textregion,
|
|
|
|
contours_per_process[mv], boxes_per_process[mv])
|
|
|
|
contours_per_process[mv], boxes_per_process[mv])
|
|
|
|
|
|
|
|
|
|
|
|
poly_sub.append(cnt_clean_rot)
|
|
|
|
textlines_rectangles_per_each_subprocess.append(bounding_rectangle_of_textlines)
|
|
|
|
boxes_sub_new.append(boxes_per_process[mv] )
|
|
|
|
bounding_box_of_textregion_per_each_subprocess.append(boxes_per_process[mv] )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q.put(slopes_sub)
|
|
|
|
queue_of_slopes_per_textregion.put(slopes_per_each_subprocess)
|
|
|
|
poly.put(poly_sub)
|
|
|
|
queue_of_textlines_rectangle_per_textregion.put(textlines_rectangles_per_each_subprocess)
|
|
|
|
box_sub.put(boxes_sub_new )
|
|
|
|
queue_of_textregion_box.put(bounding_box_of_textregion_per_each_subprocess )
|
|
|
|
contours_sub.put(contours_sub_per_p)
|
|
|
|
queue_of_quntours_of_textregion.put(contours_textregion_per_each_subprocess)
|
|
|
|
|
|
|
|
|
|
|
|
def get_slopes_and_deskew(self, contours,textline_mask_tot):
|
|
|
|
def get_slopes_and_deskew(self, contours,textline_mask_tot):
|
|
|
|
|
|
|
|
|
|
|
|
slope_biggest=0#self.return_deskew_slop(img_int_p,sigma_des)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_cores = cpu_count()
|
|
|
|
num_cores = cpu_count()
|
|
|
|
q = Queue()
|
|
|
|
|
|
|
|
poly=Queue()
|
|
|
|
queue_of_slopes_per_textregion = Queue()
|
|
|
|
box_sub=Queue()
|
|
|
|
queue_of_textlines_rectangle_per_textregion=Queue()
|
|
|
|
contours_sub=Queue()
|
|
|
|
queue_of_textregion_box=Queue()
|
|
|
|
|
|
|
|
queue_of_quntours_of_textregion=Queue()
|
|
|
|
|
|
|
|
|
|
|
|
processes = []
|
|
|
|
processes = []
|
|
|
|
nh=np.linspace(0, len(self.boxes), num_cores+1)
|
|
|
|
nh=np.linspace(0, len(self.boxes), num_cores+1)
|
|
|
@ -1125,7 +1093,8 @@ class textlineerkenner:
|
|
|
|
for i in range(num_cores):
|
|
|
|
for i in range(num_cores):
|
|
|
|
boxes_per_process=self.boxes[int(nh[i]):int(nh[i+1])]
|
|
|
|
boxes_per_process=self.boxes[int(nh[i]):int(nh[i+1])]
|
|
|
|
contours_per_process=contours[int(nh[i]):int(nh[i+1])]
|
|
|
|
contours_per_process=contours[int(nh[i]):int(nh[i+1])]
|
|
|
|
processes.append(Process(target=self.do_work_of_slopes, args=(q,poly,box_sub, boxes_per_process, contours_sub, textline_mask_tot, contours_per_process)))
|
|
|
|
processes.append(Process(target=self.do_work_of_slopes, args=(queue_of_slopes_per_textregion,queue_of_textlines_rectangle_per_textregion,
|
|
|
|
|
|
|
|
queue_of_textregion_box, boxes_per_process, queue_of_quntours_of_textregion, textline_mask_tot, contours_per_process)))
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(num_cores):
|
|
|
|
for i in range(num_cores):
|
|
|
|
processes[i].start()
|
|
|
|
processes[i].start()
|
|
|
@ -1136,10 +1105,10 @@ class textlineerkenner:
|
|
|
|
self.boxes=[]
|
|
|
|
self.boxes=[]
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(num_cores):
|
|
|
|
for i in range(num_cores):
|
|
|
|
slopes_for_sub_process=q.get(True)
|
|
|
|
slopes_for_sub_process=queue_of_slopes_per_textregion.get(True)
|
|
|
|
boxes_for_sub_process=box_sub.get(True)
|
|
|
|
boxes_for_sub_process=queue_of_textregion_box.get(True)
|
|
|
|
polys_for_sub_process=poly.get(True)
|
|
|
|
polys_for_sub_process=queue_of_textlines_rectangle_per_textregion.get(True)
|
|
|
|
contours_for_subprocess=contours_sub.get(True)
|
|
|
|
contours_for_subprocess=queue_of_quntours_of_textregion.get(True)
|
|
|
|
|
|
|
|
|
|
|
|
for j in range(len(slopes_for_sub_process)):
|
|
|
|
for j in range(len(slopes_for_sub_process)):
|
|
|
|
self.slopes.append(slopes_for_sub_process[j])
|
|
|
|
self.slopes.append(slopes_for_sub_process[j])
|
|
|
@ -1154,11 +1123,11 @@ class textlineerkenner:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def order_of_regions(self, textline_mask,contours_main):
|
|
|
|
def order_of_regions(self, textline_mask,contours_main):
|
|
|
|
mada_n=textline_mask.sum(axis=1)
|
|
|
|
textline_sum_along_width=textline_mask.sum(axis=1)
|
|
|
|
y=mada_n[:]
|
|
|
|
|
|
|
|
|
|
|
|
y=textline_sum_along_width[:]
|
|
|
|
y_help=np.zeros(len(y)+40)
|
|
|
|
y_padded=np.zeros(len(y)+40)
|
|
|
|
y_help[20:len(y)+20]=y
|
|
|
|
y_padded[20:len(y)+20]=y
|
|
|
|
x=np.array( range(len(y)) )
|
|
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -1167,8 +1136,8 @@ class textlineerkenner:
|
|
|
|
|
|
|
|
|
|
|
|
sigma_gaus=8
|
|
|
|
sigma_gaus=8
|
|
|
|
|
|
|
|
|
|
|
|
z= gaussian_filter1d(y_help, sigma_gaus)
|
|
|
|
z= gaussian_filter1d(y_padded, sigma_gaus)
|
|
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
zneg_rev=-y_padded+np.max(y_padded)
|
|
|
|
|
|
|
|
|
|
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
|
@ -1423,6 +1392,12 @@ class textlineerkenner:
|
|
|
|
|
|
|
|
|
|
|
|
# extract text regions and corresponding contours and surrounding box
|
|
|
|
# extract text regions and corresponding contours and surrounding box
|
|
|
|
text_regions=self.extract_text_regions(image_page)
|
|
|
|
text_regions=self.extract_text_regions(image_page)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions = cv2.erode(text_regions, self.kernel, iterations=3)
|
|
|
|
|
|
|
|
text_regions = cv2.dilate(text_regions, self.kernel, iterations=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(text_regions[:,:,0])
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
contours=self.get_text_region_contours_and_boxes(text_regions)
|
|
|
|
contours=self.get_text_region_contours_and_boxes(text_regions)
|
|
|
|
|
|
|
|
|
|
|
@ -1441,9 +1416,6 @@ class textlineerkenner:
|
|
|
|
|
|
|
|
|
|
|
|
# extracting textlines using segmentation
|
|
|
|
# extracting textlines using segmentation
|
|
|
|
textline_mask_tot=self.textline_contours(image_page)
|
|
|
|
textline_mask_tot=self.textline_contours(image_page)
|
|
|
|
#print(textline_mask_tot)
|
|
|
|
|
|
|
|
#plt.imshow(textline_mask_tot)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
##########
|
|
|
|
##########
|
|
|
|
K.clear_session()
|
|
|
|
K.clear_session()
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
@ -1493,7 +1465,6 @@ class textlineerkenner:
|
|
|
|
print( "time needed to get order of regions = "+"{0:.2f}".format(t6-t5) )
|
|
|
|
print( "time needed to get order of regions = "+"{0:.2f}".format(t6-t5) )
|
|
|
|
print( "time needed to implement deskewing = "+"{0:.2f}".format(t7-t6) )
|
|
|
|
print( "time needed to implement deskewing = "+"{0:.2f}".format(t7-t6) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.command()
|
|
|
@ -1509,3 +1480,4 @@ def main(image, out, model):
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|
|
|
|
main()
|
|
|
|
|
|
|
|
|
|
|
|