🧹 sbb_textline_docker: Rename to sbb_textline_detector

pull/1/head
Gerber, Mike 5 years ago
commit b85a9dc256

@ -0,0 +1,8 @@
FROM python:3
ADD main.py /
ADD requirements.txt /
RUN pip install --proxy=http-proxy.sbb.spk-berlin.de:3128 -r requirements.txt
ENTRYPOINT ["python", "./main.py"]

@ -0,0 +1,37 @@
# Textline-Recognition
***
# Installation:
Setup virtual environment:
```
virtualenv --python=python3.6 venv
```
Activate virtual environment:
```
source venv/bin/activate
```
Upgrade pip:
```
pip install -U pip
```
Install package together with its dependencies in development mode:
```
pip install -e ./
```
***
Perform document structure and textline analysis on a
scanned document image and save the result as PAGE XML.
### Usage
```
text_line_recognition --help
```

1333
main.py

File diff suppressed because it is too large Load Diff

@ -0,0 +1,10 @@
opencv-python
numpy<=1.14.5
matplotlib
seaborn
tqdm
keras
shapely
scikit-learn
tensorflow-gpu < 2.0
scipy

@ -0,0 +1,34 @@
from io import open
from setuptools import find_packages, setup
with open('requirements.txt') as fp:
install_requires = fp.read()
setup(
name="qurator-sbb-textline",
version="0.0.1",
author="The Qurator Team",
author_email="qurator@sbb.spk-berlin.de",
description="Qurator",
long_description=open("README.md", "r", encoding='utf-8').read(),
long_description_content_type="text/markdown",
keywords='qurator',
license='Apache',
url="https://qurator.ai",
packages=find_packages(exclude=["*.tests", "*.tests.*",
"tests.*", "tests"]),
install_requires=install_requires,
entry_points={
'console_scripts': [
"text_line_recognition=main:main",
]
},
python_requires='>=3.6.0',
tests_require=['pytest'],
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
)
Loading…
Cancel
Save