You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
Go to file
Clemens Neudecker cf36092dc9
Merge pull request #2 from cneud/cneud-README
Improve README.md
5 years ago
qurator Merge pull request #5 from cneud/cneud-fix-typos 5 years ago
.gitignore kebab-case snake_case executable, fix #9 5 years ago
.gitkeep Update config_params.json 5 years ago
Dockerfile Update config_params.json 5 years ago
LICENSE Create LICENSE 5 years ago
README.md Merge branch 'master' into cneud-README 5 years ago
ocrd-tool.json Update config_params.json 5 years ago
requirements.txt ocrd implies click 5 years ago
setup.py kebab-case snake_case executable, fix #9 5 years ago

README.md

Textline-Recognition

Introduction

This tool performs textline detection from document image data and returns the results as PAGE-XML.

Installation

pip install .

Models

In order to run this tool you also need trained models. You can download our pre-trained models from here:
https://file.spk-berlin.de:8443/textline_detection/

Usage

sbb_textline_detector -i <image file name> -o <directory to write output xml> -m <directory of models>

Usage with OCR-D

ocrd-example-binarize -I OCR-D-IMG -O OCR-D-IMG-BIN
ocrd_sbb_textline_detector -I OCR-D-IMG-BIN -O OCR-D-SEG-LINE-SBB \
        -p '{ "model": "/path/to/the/models/textline_detection" }'

Segmentation works on raw RGB images, but respects and retains AlternativeImages from binarization steps, so it's a good idea to do binarization first, then perform the textline detection. The used binarization processor must produce an AlternativeImage for the binarized image, not replace the original raw RGB image.