No description
Find a file
Clemens Neudecker cf36092dc9
Merge pull request #2 from cneud/cneud-README
Improve README.md
2019-12-06 20:04:05 +01:00
qurator Merge pull request #5 from cneud/cneud-fix-typos 2019-12-06 19:45:14 +01:00
.gitignore kebab-case snake_case executable, fix #9 2019-12-06 18:26:09 +01:00
.gitkeep Update config_params.json 2019-12-05 14:05:55 +01:00
Dockerfile Update config_params.json 2019-12-05 14:05:55 +01:00
LICENSE Create LICENSE 2019-12-05 22:01:47 +01:00
ocrd-tool.json Update config_params.json 2019-12-05 14:05:55 +01:00
README.md Merge branch 'master' into cneud-README 2019-12-06 20:03:51 +01:00
requirements.txt ocrd implies click 2019-12-06 19:03:10 +01:00
setup.py kebab-case snake_case executable, fix #9 2019-12-06 18:26:09 +01:00

Textline-Recognition

Introduction

This tool performs textline detection from document image data and returns the results as PAGE-XML.

Installation

pip install .

Models

In order to run this tool you also need trained models. You can download our pre-trained models from here:
https://file.spk-berlin.de:8443/textline_detection/

Usage

sbb_textline_detector -i <image file name> -o <directory to write output xml> -m <directory of models>

Usage with OCR-D

ocrd-example-binarize -I OCR-D-IMG -O OCR-D-IMG-BIN
ocrd_sbb_textline_detector -I OCR-D-IMG-BIN -O OCR-D-SEG-LINE-SBB \
        -p '{ "model": "/path/to/the/models/textline_detection" }'

Segmentation works on raw RGB images, but respects and retains AlternativeImages from binarization steps, so it's a good idea to do binarization first, then perform the textline detection. The used binarization processor must produce an AlternativeImage for the binarized image, not replace the original raw RGB image.