#!/bin/bash # Train a GT4HistOCR Calamari model # (or rather 5 for voted prediction) set -e self=`realpath $0` self_dir=`dirname "$self"` cd $self_dir DATA_SUBDIR=data get_from_annex() { annex_get 'GT4HistOCR/corpus/*.tar.bz2' } get_from_web() { download_to 'https://zenodo.org/record/1344132/files/GT4HistOCR.tar?download=1' 'GT4HistOCR' } . $self_dir/qurator_data_lib.sh handle_data rm -rf /tmp/train-calamari-gt4histocr.* TMPDIR=`mktemp -d /tmp/train-calamari-gt4histocr.XXXXX` echo "Unpacking dataset tar files to $TMPDIR" for tar in $DATA_SUBDIR/GT4HistOCR/corpus/*.tar.bz2; do tar xf $tar -C $TMPDIR done echo "Removing dta19/1882-keller_sinngedicht/04970.nrm.png (Broken PNG)" rm -f $TMPDIR/dta19/1882-keller_sinngedicht/04970.* # If we're just testing, keep just some files if [ "$TEST" = 1 ]; then num_pngs_wanted=2000 num_pngs=`find "$TMPDIR" -path "$TMPDIR/*/*/*.png" | wc -l` num_pngs_to_delete=$(($num_pngs-$num_pngs_wanted)) echo "TEST = 1, Reducing dataset from $num_pngs to $num_pngs_wanted PNG files" find "$TMPDIR" -path "$TMPDIR/*/*/*.png" | shuf -n $num_pngs_to_delete | xargs rm fi export PYTHONUNBUFFERED=1 # For python + tee training_id=`date -Iminutes` outdir=$DATA_SUBDIR/calamari-models/GT4HistOCR/$training_id mkdir -p $outdir export TF_FORCE_GPU_ALLOW_GROWTH=true # To prevent TF from taking all GPU memory calamari-cross-fold-train \ --files \ "$TMPDIR/*/*/*.png" \ --best_models_dir $outdir \ --early_stopping_frequency=0.25 \ --early_stopping_nbest=5 \ --batch_size=128 \ --n_folds=5 \ --max_parallel_models=1 \ --display=0.01 \ 2>&1 | tee $outdir/train.${training_id}.log