You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
7.1 KiB
Matlab
236 lines
7.1 KiB
Matlab
10 years ago
|
%% Machine Learning Online Class
|
||
|
% Exercise 7 | Principle Component Analysis and K-Means Clustering
|
||
|
%
|
||
|
% Instructions
|
||
|
% ------------
|
||
|
%
|
||
|
% This file contains code that helps you get started on the
|
||
|
% exercise. You will need to complete the following functions:
|
||
|
%
|
||
|
% pca.m
|
||
|
% projectData.m
|
||
|
% recoverData.m
|
||
|
% computeCentroids.m
|
||
|
% findClosestCentroids.m
|
||
|
% kMeansInitCentroids.m
|
||
|
%
|
||
|
% For this exercise, you will not need to change any code in this file,
|
||
|
% or any other files other than those mentioned above.
|
||
|
%
|
||
|
|
||
|
%% Initialization
|
||
|
clear ; close all; clc
|
||
|
|
||
|
%% ================== Part 1: Load Example Dataset ===================
|
||
|
% We start this exercise by using a small dataset that is easily to
|
||
|
% visualize
|
||
|
%
|
||
|
fprintf('Visualizing example dataset for PCA.\n\n');
|
||
|
|
||
|
% The following command loads the dataset. You should now have the
|
||
|
% variable X in your environment
|
||
|
load ('ex7data1.mat');
|
||
|
|
||
|
% Visualize the example dataset
|
||
|
plot(X(:, 1), X(:, 2), 'bo');
|
||
|
axis([0.5 6.5 2 8]); axis square;
|
||
|
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
|
||
|
%% =============== Part 2: Principal Component Analysis ===============
|
||
|
% You should now implement PCA, a dimension reduction technique. You
|
||
|
% should complete the code in pca.m
|
||
|
%
|
||
|
fprintf('\nRunning PCA on example dataset.\n\n');
|
||
|
|
||
|
% Before running PCA, it is important to first normalize X
|
||
|
[X_norm, mu, sigma] = featureNormalize(X);
|
||
|
|
||
|
% Run PCA
|
||
|
[U, S] = pca(X_norm);
|
||
|
|
||
|
% Compute mu, the mean of the each feature
|
||
|
|
||
|
% Draw the eigenvectors centered at mean of data. These lines show the
|
||
|
% directions of maximum variations in the dataset.
|
||
|
hold on;
|
||
|
drawLine(mu, mu + 1.5 * S(1,1) * U(:,1)', '-k', 'LineWidth', 2);
|
||
|
drawLine(mu, mu + 1.5 * S(2,2) * U(:,2)', '-k', 'LineWidth', 2);
|
||
|
hold off;
|
||
|
|
||
|
fprintf('Top eigenvector: \n');
|
||
|
fprintf(' U(:,1) = %f %f \n', U(1,1), U(2,1));
|
||
|
fprintf('\n(you should expect to see -0.707107 -0.707107)\n');
|
||
|
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
|
||
|
%% =================== Part 3: Dimension Reduction ===================
|
||
|
% You should now implement the projection step to map the data onto the
|
||
|
% first k eigenvectors. The code will then plot the data in this reduced
|
||
|
% dimensional space. This will show you what the data looks like when
|
||
|
% using only the corresponding eigenvectors to reconstruct it.
|
||
|
%
|
||
|
% You should complete the code in projectData.m
|
||
|
%
|
||
|
fprintf('\nDimension reduction on example dataset.\n\n');
|
||
|
|
||
|
% Plot the normalized dataset (returned from pca)
|
||
|
plot(X_norm(:, 1), X_norm(:, 2), 'bo');
|
||
|
axis([-4 3 -4 3]); axis square
|
||
|
|
||
|
% Project the data onto K = 1 dimension
|
||
|
K = 1;
|
||
|
Z = projectData(X_norm, U, K);
|
||
|
fprintf('Projection of the first example: %f\n', Z(1));
|
||
|
fprintf('\n(this value should be about 1.481274)\n\n');
|
||
|
|
||
|
X_rec = recoverData(Z, U, K);
|
||
|
fprintf('Approximation of the first example: %f %f\n', X_rec(1, 1), X_rec(1, 2));
|
||
|
fprintf('\n(this value should be about -1.047419 -1.047419)\n\n');
|
||
|
|
||
|
% Draw lines connecting the projected points to the original points
|
||
|
hold on;
|
||
|
plot(X_rec(:, 1), X_rec(:, 2), 'ro');
|
||
|
for i = 1:size(X_norm, 1)
|
||
|
drawLine(X_norm(i,:), X_rec(i,:), '--k', 'LineWidth', 1);
|
||
|
end
|
||
|
hold off
|
||
|
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
%% =============== Part 4: Loading and Visualizing Face Data =============
|
||
|
% We start the exercise by first loading and visualizing the dataset.
|
||
|
% The following code will load the dataset into your environment
|
||
|
%
|
||
|
fprintf('\nLoading face dataset.\n\n');
|
||
|
|
||
|
% Load Face dataset
|
||
|
load ('ex7faces.mat')
|
||
|
|
||
|
% Display the first 100 faces in the dataset
|
||
|
displayData(X(1:100, :));
|
||
|
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
%% =========== Part 5: PCA on Face Data: Eigenfaces ===================
|
||
|
% Run PCA and visualize the eigenvectors which are in this case eigenfaces
|
||
|
% We display the first 36 eigenfaces.
|
||
|
%
|
||
|
fprintf(['\nRunning PCA on face dataset.\n' ...
|
||
|
'(this mght take a minute or two ...)\n\n']);
|
||
|
|
||
|
% Before running PCA, it is important to first normalize X by subtracting
|
||
|
% the mean value from each feature
|
||
|
[X_norm, mu, sigma] = featureNormalize(X);
|
||
|
|
||
|
% Run PCA
|
||
|
[U, S] = pca(X_norm);
|
||
|
|
||
|
% Visualize the top 36 eigenvectors found
|
||
|
displayData(U(:, 1:36)');
|
||
|
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
|
||
|
%% ============= Part 6: Dimension Reduction for Faces =================
|
||
|
% Project images to the eigen space using the top k eigenvectors
|
||
|
% If you are applying a machine learning algorithm
|
||
|
fprintf('\nDimension reduction for face dataset.\n\n');
|
||
|
|
||
|
K = 100;
|
||
|
Z = projectData(X_norm, U, K);
|
||
|
|
||
|
fprintf('The projected data Z has a size of: ')
|
||
|
fprintf('%d ', size(Z));
|
||
|
|
||
|
fprintf('\n\nProgram paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
%% ==== Part 7: Visualization of Faces after PCA Dimension Reduction ====
|
||
|
% Project images to the eigen space using the top K eigen vectors and
|
||
|
% visualize only using those K dimensions
|
||
|
% Compare to the original input, which is also displayed
|
||
|
|
||
|
fprintf('\nVisualizing the projected (reduced dimension) faces.\n\n');
|
||
|
|
||
|
K = 100;
|
||
|
X_rec = recoverData(Z, U, K);
|
||
|
|
||
|
% Display normalized data
|
||
|
subplot(1, 2, 1);
|
||
|
displayData(X_norm(1:100,:));
|
||
|
title('Original faces');
|
||
|
axis square;
|
||
|
|
||
|
% Display reconstructed data from only k eigenfaces
|
||
|
subplot(1, 2, 2);
|
||
|
displayData(X_rec(1:100,:));
|
||
|
title('Recovered faces');
|
||
|
axis square;
|
||
|
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
|
||
|
%% === Part 8(a): Optional (ungraded) Exercise: PCA for Visualization ===
|
||
|
% One useful application of PCA is to use it to visualize high-dimensional
|
||
|
% data. In the last K-Means exercise you ran K-Means on 3-dimensional
|
||
|
% pixel colors of an image. We first visualize this output in 3D, and then
|
||
|
% apply PCA to obtain a visualization in 2D.
|
||
|
|
||
|
close all; close all; clc
|
||
|
|
||
|
% Re-load the image from the previous exercise and run K-Means on it
|
||
|
% For this to work, you need to complete the K-Means assignment first
|
||
|
A = double(imread('bird_small.png'));
|
||
|
|
||
|
% If imread does not work for you, you can try instead
|
||
|
% load ('bird_small.mat');
|
||
|
|
||
|
A = A / 255;
|
||
|
img_size = size(A);
|
||
|
X = reshape(A, img_size(1) * img_size(2), 3);
|
||
|
K = 16;
|
||
|
max_iters = 10;
|
||
|
initial_centroids = kMeansInitCentroids(X, K);
|
||
|
[centroids, idx] = runkMeans(X, initial_centroids, max_iters);
|
||
|
|
||
|
% Sample 1000 random indexes (since working with all the data is
|
||
|
% too expensive. If you have a fast computer, you may increase this.
|
||
|
sel = floor(rand(1000, 1) * size(X, 1)) + 1;
|
||
|
|
||
|
% Setup Color Palette
|
||
|
palette = hsv(K);
|
||
|
colors = palette(idx(sel), :);
|
||
|
|
||
|
% Visualize the data and centroid memberships in 3D
|
||
|
figure;
|
||
|
scatter3(X(sel, 1), X(sel, 2), X(sel, 3), 10, colors);
|
||
|
title('Pixel dataset plotted in 3D. Color shows centroid memberships');
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|
||
|
|
||
|
%% === Part 8(b): Optional (ungraded) Exercise: PCA for Visualization ===
|
||
|
% Use PCA to project this cloud to 2D for visualization
|
||
|
|
||
|
% Subtract the mean to use PCA
|
||
|
[X_norm, mu, sigma] = featureNormalize(X);
|
||
|
|
||
|
% PCA and project the data to 2D
|
||
|
[U, S] = pca(X_norm);
|
||
|
Z = projectData(X_norm, U, 2);
|
||
|
|
||
|
% Plot in 2D
|
||
|
figure;
|
||
|
plotDataPoints(Z(sel, :), idx(sel), K);
|
||
|
title('Pixel dataset plotted in 2D, using PCA for dimensionality reduction');
|
||
|
fprintf('Program paused. Press enter to continue.\n');
|
||
|
pause;
|