You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
1.9 KiB
Matlab
65 lines
1.9 KiB
Matlab
10 years ago
|
function [centroids, idx] = runkMeans(X, initial_centroids, ...
|
||
|
max_iters, plot_progress)
|
||
|
%RUNKMEANS runs the K-Means algorithm on data matrix X, where each row of X
|
||
|
%is a single example
|
||
|
% [centroids, idx] = RUNKMEANS(X, initial_centroids, max_iters, ...
|
||
|
% plot_progress) runs the K-Means algorithm on data matrix X, where each
|
||
|
% row of X is a single example. It uses initial_centroids used as the
|
||
|
% initial centroids. max_iters specifies the total number of interactions
|
||
|
% of K-Means to execute. plot_progress is a true/false flag that
|
||
|
% indicates if the function should also plot its progress as the
|
||
|
% learning happens. This is set to false by default. runkMeans returns
|
||
|
% centroids, a Kxn matrix of the computed centroids and idx, a m x 1
|
||
|
% vector of centroid assignments (i.e. each entry in range [1..K])
|
||
|
%
|
||
|
|
||
|
% Set default value for plot progress
|
||
|
if ~exist('plot_progress', 'var') || isempty(plot_progress)
|
||
|
plot_progress = false;
|
||
|
end
|
||
|
|
||
|
% Plot the data if we are plotting progress
|
||
|
if plot_progress
|
||
|
figure;
|
||
|
hold on;
|
||
|
end
|
||
|
|
||
|
% Initialize values
|
||
|
[m n] = size(X);
|
||
|
K = size(initial_centroids, 1);
|
||
|
centroids = initial_centroids;
|
||
|
previous_centroids = centroids;
|
||
|
idx = zeros(m, 1);
|
||
|
|
||
|
% Run K-Means
|
||
|
for i=1:max_iters
|
||
|
|
||
|
% Output progress
|
||
|
fprintf('K-Means iteration %d/%d...\n', i, max_iters);
|
||
|
if exist('OCTAVE_VERSION')
|
||
|
fflush(stdout);
|
||
|
end
|
||
|
|
||
|
% For each example in X, assign it to the closest centroid
|
||
|
idx = findClosestCentroids(X, centroids);
|
||
|
|
||
|
% Optionally, plot progress here
|
||
|
if plot_progress
|
||
|
plotProgresskMeans(X, centroids, previous_centroids, idx, K, i);
|
||
|
previous_centroids = centroids;
|
||
|
fprintf('Press enter to continue.\n');
|
||
|
pause;
|
||
|
end
|
||
|
|
||
|
% Given the memberships, compute new centroids
|
||
|
centroids = computeCentroids(X, idx, K);
|
||
|
end
|
||
|
|
||
|
% Hold off if we are plotting progress
|
||
|
if plot_progress
|
||
|
hold off;
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|