1
0
Fork 0
This repository has been archived on 2019-12-21. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
coursera-ml-007-exercises/ex3/oneVsAll.m

69 lines
2.2 KiB
Mathematica
Raw Normal View History

2014-10-21 20:59:55 +02:00
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
2014-10-21 20:59:55 +02:00
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
2014-10-21 20:59:55 +02:00
% to the classifier for label i
% Some useful variables
m = size(X, 1);
n = size(X, 2);
% You need to return the following variables correctly
2014-10-21 20:59:55 +02:00
all_theta = zeros(num_labels, n + 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
2014-10-21 20:59:55 +02:00
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
2014-10-21 20:59:55 +02:00
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
2014-10-21 20:59:55 +02:00
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
2014-10-21 20:59:55 +02:00
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
2014-10-21 20:59:55 +02:00
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
for c = 1:num_labels
2014-10-21 20:59:55 +02:00
% Train a one-vs all classifier for this class c
2014-10-21 20:59:55 +02:00
initial_theta = zeros(n + 1, 1);
options = optimset('GradObj', 'on', 'MaxIter', 50);
2014-10-21 20:59:55 +02:00
[theta] = fmincg(@(t)(lrCostFunction(t, X, (y == c), lambda)),
initial_theta, options);
2014-10-21 20:59:55 +02:00
all_theta(c,:) = theta';
2014-10-21 20:59:55 +02:00
end
2014-10-21 20:59:55 +02:00
% =========================================================================
end