236 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			Mathematica
		
	
	
	
	
	
		
		
			
		
	
	
			236 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			Mathematica
		
	
	
	
	
	
| 
								 | 
							
								%% Machine Learning Online Class
							 | 
						||
| 
								 | 
							
								%  Exercise 7 | Principle Component Analysis and K-Means Clustering
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%  Instructions
							 | 
						||
| 
								 | 
							
								%  ------------
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%  This file contains code that helps you get started on the
							 | 
						||
| 
								 | 
							
								%  exercise. You will need to complete the following functions:
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%     pca.m
							 | 
						||
| 
								 | 
							
								%     projectData.m
							 | 
						||
| 
								 | 
							
								%     recoverData.m
							 | 
						||
| 
								 | 
							
								%     computeCentroids.m
							 | 
						||
| 
								 | 
							
								%     findClosestCentroids.m
							 | 
						||
| 
								 | 
							
								%     kMeansInitCentroids.m
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%  For this exercise, you will not need to change any code in this file,
							 | 
						||
| 
								 | 
							
								%  or any other files other than those mentioned above.
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Initialization
							 | 
						||
| 
								 | 
							
								clear ; close all; clc
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% ================== Part 1: Load Example Dataset  ===================
							 | 
						||
| 
								 | 
							
								%  We start this exercise by using a small dataset that is easily to
							 | 
						||
| 
								 | 
							
								%  visualize
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								fprintf('Visualizing example dataset for PCA.\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  The following command loads the dataset. You should now have the 
							 | 
						||
| 
								 | 
							
								%  variable X in your environment
							 | 
						||
| 
								 | 
							
								load ('ex7data1.mat');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Visualize the example dataset
							 | 
						||
| 
								 | 
							
								plot(X(:, 1), X(:, 2), 'bo');
							 | 
						||
| 
								 | 
							
								axis([0.5 6.5 2 8]); axis square;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% =============== Part 2: Principal Component Analysis ===============
							 | 
						||
| 
								 | 
							
								%  You should now implement PCA, a dimension reduction technique. You
							 | 
						||
| 
								 | 
							
								%  should complete the code in pca.m
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								fprintf('\nRunning PCA on example dataset.\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Before running PCA, it is important to first normalize X
							 | 
						||
| 
								 | 
							
								[X_norm, mu, sigma] = featureNormalize(X);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Run PCA
							 | 
						||
| 
								 | 
							
								[U, S] = pca(X_norm);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Compute mu, the mean of the each feature
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Draw the eigenvectors centered at mean of data. These lines show the
							 | 
						||
| 
								 | 
							
								%  directions of maximum variations in the dataset.
							 | 
						||
| 
								 | 
							
								hold on;
							 | 
						||
| 
								 | 
							
								drawLine(mu, mu + 1.5 * S(1,1) * U(:,1)', '-k', 'LineWidth', 2);
							 | 
						||
| 
								 | 
							
								drawLine(mu, mu + 1.5 * S(2,2) * U(:,2)', '-k', 'LineWidth', 2);
							 | 
						||
| 
								 | 
							
								hold off;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('Top eigenvector: \n');
							 | 
						||
| 
								 | 
							
								fprintf(' U(:,1) = %f %f \n', U(1,1), U(2,1));
							 | 
						||
| 
								 | 
							
								fprintf('\n(you should expect to see -0.707107 -0.707107)\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% =================== Part 3: Dimension Reduction ===================
							 | 
						||
| 
								 | 
							
								%  You should now implement the projection step to map the data onto the 
							 | 
						||
| 
								 | 
							
								%  first k eigenvectors. The code will then plot the data in this reduced 
							 | 
						||
| 
								 | 
							
								%  dimensional space.  This will show you what the data looks like when 
							 | 
						||
| 
								 | 
							
								%  using only the corresponding eigenvectors to reconstruct it.
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%  You should complete the code in projectData.m
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								fprintf('\nDimension reduction on example dataset.\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Plot the normalized dataset (returned from pca)
							 | 
						||
| 
								 | 
							
								plot(X_norm(:, 1), X_norm(:, 2), 'bo');
							 | 
						||
| 
								 | 
							
								axis([-4 3 -4 3]); axis square
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Project the data onto K = 1 dimension
							 | 
						||
| 
								 | 
							
								K = 1;
							 | 
						||
| 
								 | 
							
								Z = projectData(X_norm, U, K);
							 | 
						||
| 
								 | 
							
								fprintf('Projection of the first example: %f\n', Z(1));
							 | 
						||
| 
								 | 
							
								fprintf('\n(this value should be about 1.481274)\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								X_rec  = recoverData(Z, U, K);
							 | 
						||
| 
								 | 
							
								fprintf('Approximation of the first example: %f %f\n', X_rec(1, 1), X_rec(1, 2));
							 | 
						||
| 
								 | 
							
								fprintf('\n(this value should be about  -1.047419 -1.047419)\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Draw lines connecting the projected points to the original points
							 | 
						||
| 
								 | 
							
								hold on;
							 | 
						||
| 
								 | 
							
								plot(X_rec(:, 1), X_rec(:, 2), 'ro');
							 | 
						||
| 
								 | 
							
								for i = 1:size(X_norm, 1)
							 | 
						||
| 
								 | 
							
								    drawLine(X_norm(i,:), X_rec(i,:), '--k', 'LineWidth', 1);
							 | 
						||
| 
								 | 
							
								end
							 | 
						||
| 
								 | 
							
								hold off
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% =============== Part 4: Loading and Visualizing Face Data =============
							 | 
						||
| 
								 | 
							
								%  We start the exercise by first loading and visualizing the dataset.
							 | 
						||
| 
								 | 
							
								%  The following code will load the dataset into your environment
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								fprintf('\nLoading face dataset.\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Load Face dataset
							 | 
						||
| 
								 | 
							
								load ('ex7faces.mat')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Display the first 100 faces in the dataset
							 | 
						||
| 
								 | 
							
								displayData(X(1:100, :));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% =========== Part 5: PCA on Face Data: Eigenfaces  ===================
							 | 
						||
| 
								 | 
							
								%  Run PCA and visualize the eigenvectors which are in this case eigenfaces
							 | 
						||
| 
								 | 
							
								%  We display the first 36 eigenfaces.
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								fprintf(['\nRunning PCA on face dataset.\n' ...
							 | 
						||
| 
								 | 
							
								         '(this mght take a minute or two ...)\n\n']);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Before running PCA, it is important to first normalize X by subtracting 
							 | 
						||
| 
								 | 
							
								%  the mean value from each feature
							 | 
						||
| 
								 | 
							
								[X_norm, mu, sigma] = featureNormalize(X);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Run PCA
							 | 
						||
| 
								 | 
							
								[U, S] = pca(X_norm);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Visualize the top 36 eigenvectors found
							 | 
						||
| 
								 | 
							
								displayData(U(:, 1:36)');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% ============= Part 6: Dimension Reduction for Faces =================
							 | 
						||
| 
								 | 
							
								%  Project images to the eigen space using the top k eigenvectors 
							 | 
						||
| 
								 | 
							
								%  If you are applying a machine learning algorithm 
							 | 
						||
| 
								 | 
							
								fprintf('\nDimension reduction for face dataset.\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								K = 100;
							 | 
						||
| 
								 | 
							
								Z = projectData(X_norm, U, K);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('The projected data Z has a size of: ')
							 | 
						||
| 
								 | 
							
								fprintf('%d ', size(Z));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('\n\nProgram paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% ==== Part 7: Visualization of Faces after PCA Dimension Reduction ====
							 | 
						||
| 
								 | 
							
								%  Project images to the eigen space using the top K eigen vectors and 
							 | 
						||
| 
								 | 
							
								%  visualize only using those K dimensions
							 | 
						||
| 
								 | 
							
								%  Compare to the original input, which is also displayed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('\nVisualizing the projected (reduced dimension) faces.\n\n');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								K = 100;
							 | 
						||
| 
								 | 
							
								X_rec  = recoverData(Z, U, K);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Display normalized data
							 | 
						||
| 
								 | 
							
								subplot(1, 2, 1);
							 | 
						||
| 
								 | 
							
								displayData(X_norm(1:100,:));
							 | 
						||
| 
								 | 
							
								title('Original faces');
							 | 
						||
| 
								 | 
							
								axis square;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Display reconstructed data from only k eigenfaces
							 | 
						||
| 
								 | 
							
								subplot(1, 2, 2);
							 | 
						||
| 
								 | 
							
								displayData(X_rec(1:100,:));
							 | 
						||
| 
								 | 
							
								title('Recovered faces');
							 | 
						||
| 
								 | 
							
								axis square;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% === Part 8(a): Optional (ungraded) Exercise: PCA for Visualization ===
							 | 
						||
| 
								 | 
							
								%  One useful application of PCA is to use it to visualize high-dimensional
							 | 
						||
| 
								 | 
							
								%  data. In the last K-Means exercise you ran K-Means on 3-dimensional 
							 | 
						||
| 
								 | 
							
								%  pixel colors of an image. We first visualize this output in 3D, and then
							 | 
						||
| 
								 | 
							
								%  apply PCA to obtain a visualization in 2D.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								close all; close all; clc
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Re-load the image from the previous exercise and run K-Means on it
							 | 
						||
| 
								 | 
							
								% For this to work, you need to complete the K-Means assignment first
							 | 
						||
| 
								 | 
							
								A = double(imread('bird_small.png'));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% If imread does not work for you, you can try instead
							 | 
						||
| 
								 | 
							
								%   load ('bird_small.mat');
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A = A / 255;
							 | 
						||
| 
								 | 
							
								img_size = size(A);
							 | 
						||
| 
								 | 
							
								X = reshape(A, img_size(1) * img_size(2), 3);
							 | 
						||
| 
								 | 
							
								K = 16; 
							 | 
						||
| 
								 | 
							
								max_iters = 10;
							 | 
						||
| 
								 | 
							
								initial_centroids = kMeansInitCentroids(X, K);
							 | 
						||
| 
								 | 
							
								[centroids, idx] = runkMeans(X, initial_centroids, max_iters);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Sample 1000 random indexes (since working with all the data is
							 | 
						||
| 
								 | 
							
								%  too expensive. If you have a fast computer, you may increase this.
							 | 
						||
| 
								 | 
							
								sel = floor(rand(1000, 1) * size(X, 1)) + 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Setup Color Palette
							 | 
						||
| 
								 | 
							
								palette = hsv(K);
							 | 
						||
| 
								 | 
							
								colors = palette(idx(sel), :);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%  Visualize the data and centroid memberships in 3D
							 | 
						||
| 
								 | 
							
								figure;
							 | 
						||
| 
								 | 
							
								scatter3(X(sel, 1), X(sel, 2), X(sel, 3), 10, colors);
							 | 
						||
| 
								 | 
							
								title('Pixel dataset plotted in 3D. Color shows centroid memberships');
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% === Part 8(b): Optional (ungraded) Exercise: PCA for Visualization ===
							 | 
						||
| 
								 | 
							
								% Use PCA to project this cloud to 2D for visualization
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Subtract the mean to use PCA
							 | 
						||
| 
								 | 
							
								[X_norm, mu, sigma] = featureNormalize(X);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% PCA and project the data to 2D
							 | 
						||
| 
								 | 
							
								[U, S] = pca(X_norm);
							 | 
						||
| 
								 | 
							
								Z = projectData(X_norm, U, 2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Plot in 2D
							 | 
						||
| 
								 | 
							
								figure;
							 | 
						||
| 
								 | 
							
								plotDataPoints(Z(sel, :), idx(sel), K);
							 | 
						||
| 
								 | 
							
								title('Pixel dataset plotted in 2D, using PCA for dimensionality reduction');
							 | 
						||
| 
								 | 
							
								fprintf('Program paused. Press enter to continue.\n');
							 | 
						||
| 
								 | 
							
								pause;
							 |