Compute the gradient for regularized logistic regression
This commit is contained in:
		
							parent
							
								
									f391ac661e
								
							
						
					
					
						commit
						9e9b9990bb
					
				
					 1 changed files with 4 additions and 0 deletions
				
			
		|  | @ -20,6 +20,10 @@ grad = zeros(size(theta)); | ||||||
| J = 1/m * (-y'*log(sigmoid(X*theta)) - (1-y)'*log(1-sigmoid(X*theta))) ... | J = 1/m * (-y'*log(sigmoid(X*theta)) - (1-y)'*log(1-sigmoid(X*theta))) ... | ||||||
|     + lambda/(2*m) * theta(2:end)' * theta(2:end); |     + lambda/(2*m) * theta(2:end)' * theta(2:end); | ||||||
| 
 | 
 | ||||||
|  | regularization_term = ... | ||||||
|  |   lambda/m * (theta .* prepad(ones(length(theta)-1, 1), length(theta), 0)); | ||||||
|  | grad = 1/m * X' * (sigmoid(X*theta) - y) + regularization_term; | ||||||
|  | 
 | ||||||
| % ============================================================= | % ============================================================= | ||||||
| 
 | 
 | ||||||
| end | end | ||||||
|  |  | ||||||
		Reference in a new issue