svm test now works with non-linearly separable data

master
neingeist 11 years ago
parent 7d283f1a2f
commit 70505f8c65

@ -11,23 +11,30 @@ int main()
Mat image = Mat::zeros(height, width, CV_8UC3); Mat image = Mat::zeros(height, width, CV_8UC3);
// Set up training data // Set up training data
float labels[4] = {1.0, -1.0, -1.0, -1.0}; Mat labelsMat = (Mat_<float>(9, 1) << 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0);
Mat labelsMat(4, 1, CV_32FC1, labels); Mat trainingDataMat = (Mat_<float>(9, 2) <<
501, 10, 255, 255, 255, 305, 10, 1, 10, 500, 290, 290, 180, 290, 200, 200, 400, 400);
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} }; assert(labelsMat.rows == trainingDataMat.rows);
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
// Set up SVM's parameters // Set up SVM's parameters
CvSVMParams params; CvSVMParams params;
params.svm_type = CvSVM::C_SVC; params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR; params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, 1e-6);
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6); params.kernel_type = CvSVM::RBF; //CvSVM::RBF, CvSVM::LINEAR ...
params.degree = 1; // for poly
params.gamma = .0001; // for poly/rbf/sigmoid
params.coef0 = 0; // for poly/sigmoid
params.C = 7; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
params.nu = 0.0; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
params.p = 0.0; // for CV_SVM_EPS_SVR
// Train the SVM // Train the SVM
CvSVM SVM; CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params); SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
Vec3b green(0,255,0), blue (255,0,0); Vec3b whiteish(200,200,200), blackish (55,55,55);
// Show the decision regions given by the SVM // Show the decision regions given by the SVM
for (int i = 0; i < image.rows; ++i) for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j) for (int j = 0; j < image.cols; ++j)
@ -36,18 +43,18 @@ int main()
float response = SVM.predict(sampleMat); float response = SVM.predict(sampleMat);
if (response == 1) if (response == 1)
image.at<Vec3b>(i,j) = green; image.at<Vec3b>(i,j) = whiteish;
else if (response == -1) else if (response == -1)
image.at<Vec3b>(i,j) = blue; image.at<Vec3b>(i,j) = blackish;
} }
// Show the training data // Show the training data
int thickness = -1; int thickness = -1;
int lineType = 8; int lineType = 8;
for (int i = 0; i < trainingDataMat.rows; i++) { for (int i = 0; i < trainingDataMat.rows; i++) {
const CvScalar color = (labels[i] == 1) ? const CvScalar color = (labelsMat.at<float>(i) == 1) ?
CV_RGB(255, 255, 255) : CV_RGB(0, 0, 0); CV_RGB(255, 255, 255) : CV_RGB(0, 0, 0);
circle(image, Point(trainingData[i][0], trainingData[i][1]), 5, circle(image, Point(trainingDataMat.at<float>(i, 0), trainingDataMat.at<float>(i, 1)), 5,
color, thickness, lineType); color, thickness, lineType);
} }
@ -59,12 +66,12 @@ int main()
for (int i = 0; i < c; ++i) for (int i = 0; i < c; ++i)
{ {
const float* v = SVM.get_support_vector(i); const float* v = SVM.get_support_vector(i);
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType); circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(0, 0, 128), thickness, lineType);
} }
imwrite("result.png", image); // save the image imwrite("result.png", image); // save the image
imshow("SVM Simple Example", image); // show it to the user imshow("SVM Non-Linear Example", image); // show it to the user
waitKey(0); waitKey(0);
} }

Loading…
Cancel
Save