|
|
|
@ -20,34 +20,41 @@ def levenshtein_matrix(seq1, seq2):
|
|
|
|
|
m = len(seq1)
|
|
|
|
|
n = len(seq2)
|
|
|
|
|
|
|
|
|
|
# Generate unique grapheme sets for both sequences
|
|
|
|
|
seq1set = set(seq1)
|
|
|
|
|
seq2set = set(seq2)
|
|
|
|
|
|
|
|
|
|
# All grapheme which occur in both sets
|
|
|
|
|
interset = seq1set.intersection(seq2set)
|
|
|
|
|
|
|
|
|
|
# Generate a boolean-mask for each interset grapheme
|
|
|
|
|
masks = {grapheme:[1]*(len(seq2)+1)for grapheme in interset}
|
|
|
|
|
|
|
|
|
|
for idx, grapheme in enumerate(seq2):
|
|
|
|
|
if grapheme in interset:
|
|
|
|
|
masks[grapheme][idx] = 0
|
|
|
|
|
|
|
|
|
|
D = np.ones((m + 1, n + 1), np.int)
|
|
|
|
|
D[:,0] = np.arange(m+1)
|
|
|
|
|
D[0,:] = np.arange(n+1)
|
|
|
|
|
|
|
|
|
|
for row, grapheme in enumerate(seq1):
|
|
|
|
|
if seq1[row] in interset:
|
|
|
|
|
mask = masks[grapheme]
|
|
|
|
|
for col in range(0,n):
|
|
|
|
|
D[row + 1, col + 1] = min(D[row, col] + mask[col], D[row + 1, col]+1, D[row, col + 1]+1)
|
|
|
|
|
else:
|
|
|
|
|
for col in range(0,n):
|
|
|
|
|
D[row+1,col+1] = min(D[row,col],D[row+1,col],D[row,col+1])+1
|
|
|
|
|
return D
|
|
|
|
|
if m > 10 and n > 10:
|
|
|
|
|
# All grapheme which occur in both sets
|
|
|
|
|
interset = set(seq1).intersection(set(seq2))
|
|
|
|
|
|
|
|
|
|
# Generate a boolean-mask for each interset grapheme
|
|
|
|
|
masks = {grapheme: [0] * (len(seq2) + 1) for grapheme in interset}
|
|
|
|
|
|
|
|
|
|
for idx, grapheme in enumerate(seq2):
|
|
|
|
|
if grapheme in interset:
|
|
|
|
|
masks[grapheme][idx] = -1
|
|
|
|
|
|
|
|
|
|
# Calculate the levensthein matrix
|
|
|
|
|
for row, grapheme in enumerate(seq1):
|
|
|
|
|
if seq1[row] in interset:
|
|
|
|
|
mask = masks[grapheme]
|
|
|
|
|
for col in range(0,n):
|
|
|
|
|
D[row + 1, col + 1] = min(D[row, col] + mask[col], D[row + 1, col], D[row, col + 1])+1
|
|
|
|
|
else:
|
|
|
|
|
for col in range(0,n):
|
|
|
|
|
D[row+1,col+1] = min(D[row,col],D[row+1,col],D[row,col+1])+1
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
for i in range(1, m+1):
|
|
|
|
|
for j in range(1, n+1):
|
|
|
|
|
E[i, j] = min(
|
|
|
|
|
E[i - 1, j - 1] + 1 * (seq1[i - 1] != seq2[j - 1]), # Same or Substitution
|
|
|
|
|
E[i, j - 1] + 1, # Insertion
|
|
|
|
|
E[i - 1, j] + 1 # Deletion
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return D
|
|
|
|
|
|
|
|
|
|
def levenshtein(seq1, seq2):
|
|
|
|
|
"""Compute the Levenshtein edit distance between two sequences"""
|
|
|
|
|