mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-15 19:09:58 +02:00
contour features: avoid unused calculations, simplify, add shortcuts
- new function: `find_center_of_contours` - simplified: `find_(new_)features_of_contours`
This commit is contained in:
parent
3aa7ad04fa
commit
0b9d4901a6
1 changed files with 27 additions and 51 deletions
|
@ -79,61 +79,37 @@ def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area=1.
|
|||
found_polygons_early.append(polygon2contour(polygon))
|
||||
return found_polygons_early
|
||||
|
||||
def find_new_features_of_contours(contours_main):
|
||||
areas_main = np.array([cv2.contourArea(contours_main[j])
|
||||
for j in range(len(contours_main))])
|
||||
M_main = [cv2.moments(contours_main[j])
|
||||
for j in range(len(contours_main))]
|
||||
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32))
|
||||
for j in range(len(M_main))]
|
||||
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32))
|
||||
for j in range(len(M_main))]
|
||||
try:
|
||||
x_min_main = np.array([np.min(contours_main[j][:, 0, 0])
|
||||
for j in range(len(contours_main))])
|
||||
argmin_x_main = np.array([np.argmin(contours_main[j][:, 0, 0])
|
||||
for j in range(len(contours_main))])
|
||||
x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 0]
|
||||
for j in range(len(contours_main))])
|
||||
y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 1]
|
||||
for j in range(len(contours_main))])
|
||||
x_max_main = np.array([np.max(contours_main[j][:, 0, 0])
|
||||
for j in range(len(contours_main))])
|
||||
y_min_main = np.array([np.min(contours_main[j][:, 0, 1])
|
||||
for j in range(len(contours_main))])
|
||||
y_max_main = np.array([np.max(contours_main[j][:, 0, 1])
|
||||
for j in range(len(contours_main))])
|
||||
except:
|
||||
x_min_main = np.array([np.min(contours_main[j][:, 0])
|
||||
for j in range(len(contours_main))])
|
||||
argmin_x_main = np.array([np.argmin(contours_main[j][:, 0])
|
||||
for j in range(len(contours_main))])
|
||||
x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0]
|
||||
for j in range(len(contours_main))])
|
||||
y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 1]
|
||||
for j in range(len(contours_main))])
|
||||
x_max_main = np.array([np.max(contours_main[j][:, 0])
|
||||
for j in range(len(contours_main))])
|
||||
y_min_main = np.array([np.min(contours_main[j][:, 1])
|
||||
for j in range(len(contours_main))])
|
||||
y_max_main = np.array([np.max(contours_main[j][:, 1])
|
||||
for j in range(len(contours_main))])
|
||||
# dis_x=np.abs(x_max_main-x_min_main)
|
||||
def find_center_of_contours(contours):
|
||||
moments = [cv2.moments(contour) for contour in contours]
|
||||
cx = [feat["m10"] / (feat["m00"] + 1e-32)
|
||||
for feat in moments]
|
||||
cy = [feat["m01"] / (feat["m00"] + 1e-32)
|
||||
for feat in moments]
|
||||
return cx, cy
|
||||
|
||||
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
|
||||
def find_new_features_of_contours(contours):
|
||||
# areas = np.array([cv2.contourArea(contour) for contour in contours])
|
||||
cx, cy = find_center_of_contours(contours)
|
||||
slice_x = np.index_exp[:, 0, 0]
|
||||
slice_y = np.index_exp[:, 0, 1]
|
||||
if any(contour.ndim < 3 for contour in contours):
|
||||
slice_x = np.index_exp[:, 0]
|
||||
slice_y = np.index_exp[:, 1]
|
||||
x_min = np.array([np.min(contour[slice_x]) for contour in contours])
|
||||
x_max = np.array([np.max(contour[slice_x]) for contour in contours])
|
||||
y_min = np.array([np.min(contour[slice_y]) for contour in contours])
|
||||
y_max = np.array([np.max(contour[slice_y]) for contour in contours])
|
||||
# dis_x=np.abs(x_max-x_min)
|
||||
y_corr_x_min = np.array([contour[np.argmin(contour[slice_x])][slice_y[1:]]
|
||||
for contour in contours])
|
||||
|
||||
def find_features_of_contours(contours_main):
|
||||
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
||||
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
||||
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
||||
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
||||
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
||||
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
||||
return cx, cy, x_min, x_max, y_min, y_max, y_corr_x_min
|
||||
|
||||
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
||||
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
||||
def find_features_of_contours(contours):
|
||||
y_min = np.array([np.min(contour[:,0,1]) for contour in contours])
|
||||
y_max = np.array([np.max(contour[:,0,1]) for contour in contours])
|
||||
|
||||
return y_min_main, y_max_main
|
||||
return y_min, y_max
|
||||
|
||||
def return_parent_contours(contours, hierarchy):
|
||||
contours_parent = [contours[i]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue