|
|
@ -2212,16 +2212,7 @@ class eynollah:
|
|
|
|
self.logger.info("slope_deskew: %s", slope_deskew)
|
|
|
|
self.logger.info("slope_deskew: %s", slope_deskew)
|
|
|
|
return slope_deskew, slope_first
|
|
|
|
return slope_deskew, slope_first
|
|
|
|
|
|
|
|
|
|
|
|
def run_marginals(
|
|
|
|
def run_marginals(self, image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1):
|
|
|
|
self,
|
|
|
|
|
|
|
|
image_page,
|
|
|
|
|
|
|
|
textline_mask_tot_ea,
|
|
|
|
|
|
|
|
mask_images,
|
|
|
|
|
|
|
|
mask_lines,
|
|
|
|
|
|
|
|
num_col_classifier,
|
|
|
|
|
|
|
|
slope_deskew,
|
|
|
|
|
|
|
|
text_regions_p_1
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
image_page_rotated, textline_mask_tot = image_page[:, :], textline_mask_tot_ea[:, :]
|
|
|
|
image_page_rotated, textline_mask_tot = image_page[:, :], textline_mask_tot_ea[:, :]
|
|
|
|
textline_mask_tot[mask_images[:, :] == 1] = 0
|
|
|
|
textline_mask_tot[mask_images[:, :] == 1] = 0
|
|
|
|
|
|
|
|
|
|
|
@ -2249,12 +2240,142 @@ class eynollah:
|
|
|
|
self.plotter.save_plot_of_layout_main(text_regions_p, image_page)
|
|
|
|
self.plotter.save_plot_of_layout_main(text_regions_p, image_page)
|
|
|
|
return textline_mask_tot, text_regions_p, image_page_rotated
|
|
|
|
return textline_mask_tot, text_regions_p, image_page_rotated
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier):
|
|
|
|
|
|
|
|
self.logger.debug('enter run_boxes_no_full_layout')
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew)
|
|
|
|
|
|
|
|
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
|
|
|
|
|
|
|
|
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pixel_lines = 3
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("num_col_classifier: %s", num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
regions_without_seperators = regions_without_seperators.astype(np.uint8)
|
|
|
|
|
|
|
|
regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6)
|
|
|
|
|
|
|
|
#random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1])
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image < -0.5] = 0
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image != 0] = 1
|
|
|
|
|
|
|
|
#regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 2)] = 1
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8)
|
|
|
|
|
|
|
|
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6)
|
|
|
|
|
|
|
|
#random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1])
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image < -0.5] = 0
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image != 0] = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
|
|
|
|
|
|
|
self.logger.debug("len(boxes): %s", len(boxes))
|
|
|
|
|
|
|
|
self.logger.info("detecting boxes took %ss", str(time.time() - t1))
|
|
|
|
|
|
|
|
img_revised_tab = text_regions_p[:, :]
|
|
|
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(img_revised_tab)
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
self.logger.debug('exit run_boxes_no_full_layout')
|
|
|
|
|
|
|
|
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_boxes_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions):
|
|
|
|
|
|
|
|
self.logger.debug('enter run_boxes_full_layout')
|
|
|
|
|
|
|
|
# set first model with second model
|
|
|
|
|
|
|
|
text_regions_p[:, :][text_regions_p[:, :] == 2] = 5
|
|
|
|
|
|
|
|
text_regions_p[:, :][text_regions_p[:, :] == 3] = 6
|
|
|
|
|
|
|
|
text_regions_p[:, :][text_regions_p[:, :] == 4] = 8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
# gc.collect()
|
|
|
|
|
|
|
|
image_page = image_page.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# print(type(image_page))
|
|
|
|
|
|
|
|
regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, True, cols=num_col_classifier)
|
|
|
|
|
|
|
|
text_regions_p[:,:][regions_fully[:,:,0]==6]=6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p)
|
|
|
|
|
|
|
|
regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully_np[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier > 2:
|
|
|
|
|
|
|
|
regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully_np[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4
|
|
|
|
|
|
|
|
text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(text_regions_p)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n, regions_fully_n = rotation_not_90_func_full_layout(image_page, textline_mask_tot, text_regions_p, regions_fully, slope_deskew)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
img_revised_tab = np.copy(text_regions_p[:, :])
|
|
|
|
|
|
|
|
pixel_img = 5
|
|
|
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
|
|
|
|
|
self.logger.debug('exit run_boxes_full_layout')
|
|
|
|
|
|
|
|
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, regions_fully
|
|
|
|
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
def run(self):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Get image and scales, then extract the page of scanned image
|
|
|
|
Get image and scales, then extract the page of scanned image
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
is_image_enhanced = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
img_res, is_image_enhanced, num_column_is_classified = self.run_enhancement()
|
|
|
|
img_res, is_image_enhanced, num_column_is_classified = self.run_enhancement()
|
|
|
@ -2289,139 +2410,14 @@ class eynollah:
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
if not self.full_layout:
|
|
|
|
if not self.full_layout:
|
|
|
|
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier)
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew)
|
|
|
|
|
|
|
|
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
|
|
|
|
|
|
|
|
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pixel_lines = 3
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("num_col_classifier: %s", num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
regions_without_seperators = regions_without_seperators.astype(np.uint8)
|
|
|
|
|
|
|
|
regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6)
|
|
|
|
|
|
|
|
#random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1])
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image < -0.5] = 0
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image != 0] = 1
|
|
|
|
|
|
|
|
#regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 2)] = 1
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8)
|
|
|
|
|
|
|
|
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6)
|
|
|
|
|
|
|
|
#random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1])
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image < -0.5] = 0
|
|
|
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image != 0] = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.debug("len(boxes): %s", len(boxes))
|
|
|
|
|
|
|
|
self.logger.info("detecting boxes took %ss", str(time.time() - t1))
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
img_revised_tab = text_regions_p[:, :]
|
|
|
|
|
|
|
|
pixel_img = 2
|
|
|
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(img_revised_tab)
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pixel_img = 4
|
|
|
|
pixel_img = 4
|
|
|
|
min_area_mar = 0.00001
|
|
|
|
min_area_mar = 0.00001
|
|
|
|
polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar)
|
|
|
|
polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar)
|
|
|
|
|
|
|
|
|
|
|
|
if self.full_layout:
|
|
|
|
if self.full_layout:
|
|
|
|
# set first model with second model
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, regions_fully = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions)
|
|
|
|
text_regions_p[:, :][text_regions_p[:, :] == 2] = 5
|
|
|
|
|
|
|
|
text_regions_p[:, :][text_regions_p[:, :] == 3] = 6
|
|
|
|
|
|
|
|
text_regions_p[:, :][text_regions_p[:, :] == 4] = 8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
# gc.collect()
|
|
|
|
|
|
|
|
image_page = image_page.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# print(type(image_page))
|
|
|
|
|
|
|
|
regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, True, cols=num_col_classifier)
|
|
|
|
|
|
|
|
text_regions_p[:,:][regions_fully[:,:,0]==6]=6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p)
|
|
|
|
|
|
|
|
regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully_np[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier > 2:
|
|
|
|
|
|
|
|
regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully_np[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(regions_fully[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4
|
|
|
|
|
|
|
|
text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(text_regions_p)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n, regions_fully_n = rotation_not_90_func_full_layout(image_page, textline_mask_tot, text_regions_p, regions_fully, slope_deskew)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
img_revised_tab = np.copy(text_regions_p[:, :])
|
|
|
|
|
|
|
|
self.logger.info("detection of full layout took %ss", str(time.time() - t1))
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
pixel_img = 5
|
|
|
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(img_revised_tab)
|
|
|
|
# plt.imshow(img_revised_tab)
|
|
|
|
# plt.show()
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|