|
|
@ -252,7 +252,7 @@ class Eynollah:
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425"
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425"
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314"
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314"
|
|
|
|
self.model_reading_order_machine_dir = dir_models + "/model_ens_reading_order_machine_based"
|
|
|
|
self.model_reading_order_machine_dir = dir_models + "/model_ens_reading_order_machine_based"
|
|
|
|
self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige"
|
|
|
|
self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_early12_sp_2_3_5_6_7_8_9_10_12_14_15_16_18"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige"
|
|
|
|
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
|
|
|
|
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
|
|
|
|
self.model_region_dir_fully = dir_models + "/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
|
|
|
|
self.model_region_dir_fully = dir_models + "/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
|
|
|
|
if self.textline_light:
|
|
|
|
if self.textline_light:
|
|
|
@ -541,6 +541,7 @@ class Eynollah:
|
|
|
|
img = self.imread()
|
|
|
|
img = self.imread()
|
|
|
|
|
|
|
|
|
|
|
|
_, page_coord = self.early_page_for_num_of_column_classification(img)
|
|
|
|
_, page_coord = self.early_page_for_num_of_column_classification(img)
|
|
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier)
|
|
|
|
model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier)
|
|
|
|
if self.input_binary:
|
|
|
|
if self.input_binary:
|
|
|
@ -611,6 +612,10 @@ class Eynollah:
|
|
|
|
width_early = img.shape[1]
|
|
|
|
width_early = img.shape[1]
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
_, page_coord = self.early_page_for_num_of_column_classification(img_bin)
|
|
|
|
_, page_coord = self.early_page_for_num_of_column_classification(img_bin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.image_page_org_size = img[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3], :]
|
|
|
|
|
|
|
|
self.page_coord = page_coord
|
|
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier)
|
|
|
|
model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
@ -737,7 +742,7 @@ class Eynollah:
|
|
|
|
def get_image_and_scales_after_enhancing(self, img_org, img_res):
|
|
|
|
def get_image_and_scales_after_enhancing(self, img_org, img_res):
|
|
|
|
self.logger.debug("enter get_image_and_scales_after_enhancing")
|
|
|
|
self.logger.debug("enter get_image_and_scales_after_enhancing")
|
|
|
|
self.image = np.copy(img_res)
|
|
|
|
self.image = np.copy(img_res)
|
|
|
|
self.image = self.image.astype(np.uint8)
|
|
|
|
#self.image = self.image.astype(np.uint8)
|
|
|
|
self.image_org = np.copy(img_org)
|
|
|
|
self.image_org = np.copy(img_org)
|
|
|
|
self.height_org = self.image_org.shape[0]
|
|
|
|
self.height_org = self.image_org.shape[0]
|
|
|
|
self.width_org = self.image_org.shape[1]
|
|
|
|
self.width_org = self.image_org.shape[1]
|
|
|
@ -1059,19 +1064,18 @@ class Eynollah:
|
|
|
|
if not patches:
|
|
|
|
if not patches:
|
|
|
|
img_h_page = img.shape[0]
|
|
|
|
img_h_page = img.shape[0]
|
|
|
|
img_w_page = img.shape[1]
|
|
|
|
img_w_page = img.shape[1]
|
|
|
|
img = img / float(255.0)
|
|
|
|
img = img / 255.0
|
|
|
|
img = resize_image(img, img_height_model, img_width_model)
|
|
|
|
img = resize_image(img, img_height_model, img_width_model)
|
|
|
|
|
|
|
|
|
|
|
|
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]), verbose=0)
|
|
|
|
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]), verbose=0)
|
|
|
|
|
|
|
|
|
|
|
|
#seg_not_base = label_p_pred[0,:,:,4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#seg_not_base[seg_not_base>0.4] =1
|
|
|
|
|
|
|
|
#seg_not_base[seg_not_base<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
|
|
|
|
|
|
|
|
#seg[seg_not_base==1]=4
|
|
|
|
if thresholding_for_artificial_class_in_light_version:
|
|
|
|
|
|
|
|
seg_art = label_p_pred[0,:,:,4]
|
|
|
|
|
|
|
|
seg_art[seg_art<0.1] =0
|
|
|
|
|
|
|
|
seg_art[seg_art>0] =1
|
|
|
|
|
|
|
|
seg[seg_art==1]=4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
|
|
|
|
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
|
|
|
@ -2151,7 +2155,7 @@ class Eynollah:
|
|
|
|
#print(num_col_classifier,'num_col_classifier')
|
|
|
|
#print(num_col_classifier,'num_col_classifier')
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier == 1:
|
|
|
|
if num_col_classifier == 1:
|
|
|
|
img_w_new = 1000
|
|
|
|
img_w_new = 800
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
|
|
elif num_col_classifier == 2:
|
|
|
|
elif num_col_classifier == 2:
|
|
|
@ -2206,30 +2210,40 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_height_h, img_width_h )
|
|
|
|
textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_height_h, img_width_h )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(self.image_org.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshwo(self.image_page_org_size)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
if not skip_layout_and_reading_order:
|
|
|
|
if not skip_layout_and_reading_order:
|
|
|
|
#print("inside 2 ", time.time()-t_in)
|
|
|
|
#print("inside 2 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
|
|
#print(img_resized.shape, num_col_classifier, "num_col_classifier")
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
|
|
|
|
prediction_regions_org = np.zeros((self.image_org.shape[0], self.image_org.shape[1], 3))
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(False, img_resized, model_region, n_batch_inference=1)
|
|
|
|
prediction_regions_page = self.do_prediction_new_concept(False, self.image_page_org_size, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = False)
|
|
|
|
|
|
|
|
prediction_regions_org[self.page_coord[0] : self.page_coord[1], self.page_coord[2] : self.page_coord[3],:] = prediction_regions_page
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light, n_batch_inference=3)
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region)
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region)
|
|
|
|
##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(False, img_resized, self.model_region_1_2, n_batch_inference=1)
|
|
|
|
prediction_regions_org = np.zeros((self.image_org.shape[0], self.image_org.shape[1], 3))
|
|
|
|
|
|
|
|
prediction_regions_page = self.do_prediction_new_concept(False, self.image_page_org_size, self.model_region_1_2, n_batch_inference=1, thresholding_for_artificial_class_in_light_version=False)
|
|
|
|
|
|
|
|
prediction_regions_org[self.page_coord[0] : self.page_coord[1], self.page_coord[2] : self.page_coord[3],:] = prediction_regions_page
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region, n_batch_inference=3)
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region, n_batch_inference=3)
|
|
|
|
###prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
###prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
|
|
|
|
|
|
|
|
#print("inside 3 ", time.time()-t_in)
|
|
|
|
#print("inside 3 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
|
|
#plt.show()
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h )
|
|
|
|
prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h )
|
|
|
|
|
|
|
|
|
|
|
|
img_bin = resize_image(img_bin,img_height_h, img_width_h )
|
|
|
|
img_bin = resize_image(img_bin,img_height_h, img_width_h )
|
|
|
@ -3195,7 +3209,7 @@ class Eynollah:
|
|
|
|
scale = 1
|
|
|
|
scale = 1
|
|
|
|
if is_image_enhanced:
|
|
|
|
if is_image_enhanced:
|
|
|
|
if self.allow_enhancement:
|
|
|
|
if self.allow_enhancement:
|
|
|
|
img_res = img_res.astype(np.uint8)
|
|
|
|
#img_res = img_res.astype(np.uint8)
|
|
|
|
self.get_image_and_scales(img_org, img_res, scale)
|
|
|
|
self.get_image_and_scales(img_org, img_res, scale)
|
|
|
|
if self.plotter:
|
|
|
|
if self.plotter:
|
|
|
|
self.plotter.save_enhanced_image(img_res)
|
|
|
|
self.plotter.save_enhanced_image(img_res)
|
|
|
|