avoid indentation

pull/142/head
Robert Sachunsky 3 weeks ago
parent 055463d23a
commit c3163caefd

@ -1140,227 +1140,226 @@ class Eynollah:
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
prediction_true = resize_image(seg_color, img_h_page, img_w_page) prediction_true = resize_image(seg_color, img_h_page, img_w_page)
prediction_true = prediction_true.astype(np.uint8) prediction_true = prediction_true.astype(np.uint8)
return prediction_true
if img.shape[0] < img_height_model:
img = resize_image(img, img_height_model, img.shape[1])
else: if img.shape[1] < img_width_model:
if img.shape[0] < img_height_model: img = resize_image(img, img.shape[0], img_width_model)
img = resize_image(img, img_height_model, img.shape[1])
if img.shape[1] < img_width_model: self.logger.debug("Patch size: %sx%s", img_height_model, img_width_model)
img = resize_image(img, img.shape[0], img_width_model) margin = int(marginal_of_patch_percent * img_height_model)
width_mid = img_width_model - 2 * margin
height_mid = img_height_model - 2 * margin
img = img / float(255.0)
img = img.astype(np.float16)
img_h = img.shape[0]
img_w = img.shape[1]
prediction_true = np.zeros((img_h, img_w, 3))
mask_true = np.zeros((img_h, img_w))
nxf = img_w / float(width_mid)
nyf = img_h / float(height_mid)
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
self.logger.debug("Patch size: %sx%s", img_height_model, img_width_model) list_i_s = []
margin = int(marginal_of_patch_percent * img_height_model) list_j_s = []
width_mid = img_width_model - 2 * margin list_x_u = []
height_mid = img_height_model - 2 * margin list_x_d = []
img = img / float(255.0) list_y_u = []
img = img.astype(np.float16) list_y_d = []
img_h = img.shape[0]
img_w = img.shape[1]
prediction_true = np.zeros((img_h, img_w, 3))
mask_true = np.zeros((img_h, img_w))
nxf = img_w / float(width_mid)
nyf = img_h / float(height_mid)
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3))
for i in range(nxf):
for j in range(nyf):
if i == 0:
index_x_d = i * width_mid
index_x_u = index_x_d + img_width_model
else:
index_x_d = i * width_mid
index_x_u = index_x_d + img_width_model
if j == 0:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
else:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - img_width_model
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - img_height_model
list_i_s.append(i)
list_j_s.append(j)
list_x_u.append(index_x_u)
list_x_d.append(index_x_d)
list_y_d.append(index_y_d)
list_y_u.append(index_y_u)
img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
batch_indexer = batch_indexer + 1
if batch_indexer == n_batch_inference:
label_p_pred = model.predict(img_patch,verbose=0)
seg = np.argmax(label_p_pred, axis=3)
if thresholding_for_some_classes_in_light_version:
seg_art = label_p_pred[:,:,:,4]
seg_art[seg_art<0.2] =0
seg_art[seg_art>0] =1
seg_line = label_p_pred[:,:,:,3]
seg_line[seg_line>0.1] =1
seg_line[seg_line<1] =0
seg[seg_art==1]=4
seg[(seg_line==1) & (seg==0)]=3
if thresholding_for_artificial_class_in_light_version:
seg_art = label_p_pred[:,:,:,2]
seg_art[seg_art<0.2] = 0
seg_art[seg_art>0] =1
seg[seg_art==1]=2
indexer_inside_batch = 0
for i_batch, j_batch in zip(list_i_s, list_j_s):
seg_in = seg[indexer_inside_batch,:,:]
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
index_y_u_in = list_y_u[indexer_inside_batch]
index_y_d_in = list_y_d[indexer_inside_batch]
index_x_u_in = list_x_u[indexer_inside_batch]
index_x_d_in = list_x_d[indexer_inside_batch]
if i_batch == 0 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
else:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch +1
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3))
elif i==(nxf-1) and j==(nyf-1):
label_p_pred = model.predict(img_patch,verbose=0)
seg = np.argmax(label_p_pred, axis=3)
if thresholding_for_some_classes_in_light_version:
seg_art = label_p_pred[:,:,:,4]
seg_art[seg_art<0.2] =0
seg_art[seg_art>0] =1
seg_line = label_p_pred[:,:,:,3]
seg_line[seg_line>0.1] =1
seg_line[seg_line<1] =0
seg[seg_art==1]=4
seg[(seg_line==1) & (seg==0)]=3
if thresholding_for_artificial_class_in_light_version:
seg_art = label_p_pred[:,:,:,2]
seg_art[seg_art<0.2] = 0
seg_art[seg_art>0] =1
seg[seg_art==1]=2
indexer_inside_batch = 0
for i_batch, j_batch in zip(list_i_s, list_j_s):
seg_in = seg[indexer_inside_batch,:,:]
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
index_y_u_in = list_y_u[indexer_inside_batch]
index_y_d_in = list_y_d[indexer_inside_batch]
index_x_u_in = list_x_u[indexer_inside_batch]
index_x_d_in = list_x_d[indexer_inside_batch]
if i_batch == 0 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
else:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch +1 batch_indexer = 0
img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3))
list_i_s = [] for i in range(nxf):
list_j_s = [] for j in range(nyf):
list_x_u = [] if i == 0:
list_x_d = [] index_x_d = i * width_mid
list_y_u = [] index_x_u = index_x_d + img_width_model
list_y_d = [] else:
index_x_d = i * width_mid
index_x_u = index_x_d + img_width_model
if j == 0:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
else:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - img_width_model
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - img_height_model
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3))
prediction_true = prediction_true.astype(np.uint8) list_i_s.append(i)
list_j_s.append(j)
list_x_u.append(index_x_u)
list_x_d.append(index_x_d)
list_y_d.append(index_y_d)
list_y_u.append(index_y_u)
img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
batch_indexer = batch_indexer + 1
if batch_indexer == n_batch_inference:
label_p_pred = model.predict(img_patch,verbose=0)
seg = np.argmax(label_p_pred, axis=3)
if thresholding_for_some_classes_in_light_version:
seg_art = label_p_pred[:,:,:,4]
seg_art[seg_art<0.2] =0
seg_art[seg_art>0] =1
seg_line = label_p_pred[:,:,:,3]
seg_line[seg_line>0.1] =1
seg_line[seg_line<1] =0
seg[seg_art==1]=4
seg[(seg_line==1) & (seg==0)]=3
if thresholding_for_artificial_class_in_light_version:
seg_art = label_p_pred[:,:,:,2]
seg_art[seg_art<0.2] = 0
seg_art[seg_art>0] =1
seg[seg_art==1]=2
indexer_inside_batch = 0
for i_batch, j_batch in zip(list_i_s, list_j_s):
seg_in = seg[indexer_inside_batch,:,:]
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
index_y_u_in = list_y_u[indexer_inside_batch]
index_y_d_in = list_y_d[indexer_inside_batch]
index_x_u_in = list_x_u[indexer_inside_batch]
index_x_d_in = list_x_d[indexer_inside_batch]
if i_batch == 0 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
else:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch +1
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3))
elif i==(nxf-1) and j==(nyf-1):
label_p_pred = model.predict(img_patch,verbose=0)
seg = np.argmax(label_p_pred, axis=3)
if thresholding_for_some_classes_in_light_version:
seg_art = label_p_pred[:,:,:,4]
seg_art[seg_art<0.2] =0
seg_art[seg_art>0] =1
seg_line = label_p_pred[:,:,:,3]
seg_line[seg_line>0.1] =1
seg_line[seg_line<1] =0
seg[seg_art==1]=4
seg[(seg_line==1) & (seg==0)]=3
if thresholding_for_artificial_class_in_light_version:
seg_art = label_p_pred[:,:,:,2]
seg_art[seg_art<0.2] = 0
seg_art[seg_art>0] =1
seg[seg_art==1]=2
indexer_inside_batch = 0
for i_batch, j_batch in zip(list_i_s, list_j_s):
seg_in = seg[indexer_inside_batch,:,:]
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
index_y_u_in = list_y_u[indexer_inside_batch]
index_y_d_in = list_y_d[indexer_inside_batch]
index_x_u_in = list_x_u[indexer_inside_batch]
index_x_d_in = list_x_d[indexer_inside_batch]
if i_batch == 0 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
else:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch +1
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3))
prediction_true = prediction_true.astype(np.uint8)
return prediction_true return prediction_true
def extract_page(self): def extract_page(self):

Loading…
Cancel
Save