|
|
@ -195,6 +195,7 @@ class Eynollah:
|
|
|
|
self.allow_scaling = allow_scaling
|
|
|
|
self.allow_scaling = allow_scaling
|
|
|
|
self.headers_off = headers_off
|
|
|
|
self.headers_off = headers_off
|
|
|
|
self.light_version = light_version
|
|
|
|
self.light_version = light_version
|
|
|
|
|
|
|
|
self.extract_only_images = True
|
|
|
|
self.ignore_page_extraction = ignore_page_extraction
|
|
|
|
self.ignore_page_extraction = ignore_page_extraction
|
|
|
|
self.pcgts = pcgts
|
|
|
|
self.pcgts = pcgts
|
|
|
|
if not dir_in:
|
|
|
|
if not dir_in:
|
|
|
@ -225,6 +226,7 @@ class Eynollah:
|
|
|
|
self.model_page_dir = dir_models + "/eynollah-page-extraction_20210425"
|
|
|
|
self.model_page_dir = dir_models + "/eynollah-page-extraction_20210425"
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425"
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425"
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314"
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314"
|
|
|
|
|
|
|
|
self.model_region_dir_p_ens_light_only_images_extraction = dir_models + "/eynollah-main-regions_20231127_672_org_ens_11_13_16_17_18"
|
|
|
|
if self.textline_light:
|
|
|
|
if self.textline_light:
|
|
|
|
self.model_textline_dir = dir_models + "/eynollah-textline_light_20210425"
|
|
|
|
self.model_textline_dir = dir_models + "/eynollah-textline_light_20210425"
|
|
|
|
else:
|
|
|
|
else:
|
|
|
@ -249,7 +251,23 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
self.ls_imgs = os.listdir(self.dir_in)
|
|
|
|
self.ls_imgs = os.listdir(self.dir_in)
|
|
|
|
|
|
|
|
|
|
|
|
if dir_in and not light_version:
|
|
|
|
if dir_in and self.extract_only_images:
|
|
|
|
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
|
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
|
|
|
|
session = tf.compat.v1.Session(config=config)
|
|
|
|
|
|
|
|
set_session(session)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.model_page = self.our_load_model(self.model_page_dir)
|
|
|
|
|
|
|
|
self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier)
|
|
|
|
|
|
|
|
#self.model_bin = self.our_load_model(self.model_dir_of_binarization)
|
|
|
|
|
|
|
|
#self.model_textline = self.our_load_model(self.model_textline_dir)
|
|
|
|
|
|
|
|
self.model_region = self.our_load_model(self.model_region_dir_p_ens_light_only_images_extraction)
|
|
|
|
|
|
|
|
#self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np)
|
|
|
|
|
|
|
|
#self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.ls_imgs = os.listdir(self.dir_in)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if dir_in and not (light_version or self.extract_only_images):
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
session = tf.compat.v1.Session(config=config)
|
|
|
|
session = tf.compat.v1.Session(config=config)
|
|
|
@ -268,6 +286,7 @@ class Eynollah:
|
|
|
|
self.ls_imgs = os.listdir(self.dir_in)
|
|
|
|
self.ls_imgs = os.listdir(self.dir_in)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cache_images(self, image_filename=None, image_pil=None):
|
|
|
|
def _cache_images(self, image_filename=None, image_pil=None):
|
|
|
|
ret = {}
|
|
|
|
ret = {}
|
|
|
|
if image_filename:
|
|
|
|
if image_filename:
|
|
|
@ -463,6 +482,27 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
return img_new, num_column_is_classified
|
|
|
|
return img_new, num_column_is_classified
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_width_height_by_columns_extract_only_images(self, img, num_col, width_early, label_p_pred):
|
|
|
|
|
|
|
|
self.logger.debug("enter calculate_width_height_by_columns")
|
|
|
|
|
|
|
|
if num_col == 1:
|
|
|
|
|
|
|
|
img_w_new = 700
|
|
|
|
|
|
|
|
elif num_col == 2:
|
|
|
|
|
|
|
|
img_w_new = 900
|
|
|
|
|
|
|
|
elif num_col == 3:
|
|
|
|
|
|
|
|
img_w_new = 1500
|
|
|
|
|
|
|
|
elif num_col == 4:
|
|
|
|
|
|
|
|
img_w_new = 1800
|
|
|
|
|
|
|
|
elif num_col == 5:
|
|
|
|
|
|
|
|
img_w_new = 2200
|
|
|
|
|
|
|
|
elif num_col == 6:
|
|
|
|
|
|
|
|
img_w_new = 2500
|
|
|
|
|
|
|
|
img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_new = resize_image(img, img_h_new, img_w_new)
|
|
|
|
|
|
|
|
num_column_is_classified = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return img_new, num_column_is_classified
|
|
|
|
|
|
|
|
|
|
|
|
def resize_image_with_column_classifier(self, is_image_enhanced, img_bin):
|
|
|
|
def resize_image_with_column_classifier(self, is_image_enhanced, img_bin):
|
|
|
|
self.logger.debug("enter resize_image_with_column_classifier")
|
|
|
|
self.logger.debug("enter resize_image_with_column_classifier")
|
|
|
|
if self.input_binary:
|
|
|
|
if self.input_binary:
|
|
|
@ -570,16 +610,21 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5))
|
|
|
|
self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5))
|
|
|
|
|
|
|
|
|
|
|
|
if dpi < DPI_THRESHOLD:
|
|
|
|
if not self.extract_only_images:
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
|
|
|
|
if dpi < DPI_THRESHOLD:
|
|
|
|
if light_version:
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
|
|
|
|
image_res = np.copy(img_new)
|
|
|
|
if light_version:
|
|
|
|
|
|
|
|
image_res = np.copy(img_new)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
image_res = self.predict_enhancement(img_new)
|
|
|
|
|
|
|
|
is_image_enhanced = True
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
image_res = self.predict_enhancement(img_new)
|
|
|
|
num_column_is_classified = True
|
|
|
|
is_image_enhanced = True
|
|
|
|
image_res = np.copy(img)
|
|
|
|
|
|
|
|
is_image_enhanced = False
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
num_column_is_classified = True
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns_extract_only_images(img, num_col, width_early, label_p_pred)
|
|
|
|
image_res = np.copy(img)
|
|
|
|
image_res = np.copy(img_new)
|
|
|
|
is_image_enhanced = False
|
|
|
|
is_image_enhanced = False
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.debug("exit resize_and_enhance_image_with_column_classifier")
|
|
|
|
self.logger.debug("exit resize_and_enhance_image_with_column_classifier")
|
|
|
@ -867,10 +912,12 @@ class Eynollah:
|
|
|
|
seg_not_base = label_p_pred[0,:,:,4]
|
|
|
|
seg_not_base = label_p_pred[0,:,:,4]
|
|
|
|
##seg2 = -label_p_pred[0,:,:,2]
|
|
|
|
##seg2 = -label_p_pred[0,:,:,2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.extract_only_images:
|
|
|
|
seg_not_base[seg_not_base>0.03] =1
|
|
|
|
seg_not_base[seg_not_base>0.3] =1
|
|
|
|
seg_not_base[seg_not_base<1] =0
|
|
|
|
seg_not_base[seg_not_base<1] =0
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
seg_not_base[seg_not_base>0.03] =1
|
|
|
|
|
|
|
|
seg_not_base[seg_not_base<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_test = label_p_pred[0,:,:,1]
|
|
|
|
seg_test = label_p_pred[0,:,:,1]
|
|
|
@ -888,13 +935,10 @@ class Eynollah:
|
|
|
|
seg_line[seg_line>0.1] =1
|
|
|
|
seg_line[seg_line>0.1] =1
|
|
|
|
seg_line[seg_line<1] =0
|
|
|
|
seg_line[seg_line<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not self.extract_only_images:
|
|
|
|
seg_background = label_p_pred[0,:,:,0]
|
|
|
|
seg_background = label_p_pred[0,:,:,0]
|
|
|
|
##seg2 = -label_p_pred[0,:,:,2]
|
|
|
|
seg_background[seg_background>0.25] =1
|
|
|
|
|
|
|
|
seg_background[seg_background<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
seg_background[seg_background>0.25] =1
|
|
|
|
|
|
|
|
seg_background[seg_background<1] =0
|
|
|
|
|
|
|
|
##seg = seg+seg2
|
|
|
|
##seg = seg+seg2
|
|
|
|
#seg = label_p_pred[0,:,:,2]
|
|
|
|
#seg = label_p_pred[0,:,:,2]
|
|
|
|
#seg[seg>0.4] =1
|
|
|
|
#seg[seg>0.4] =1
|
|
|
@ -908,7 +952,8 @@ class Eynollah:
|
|
|
|
#seg[seg==1]=0
|
|
|
|
#seg[seg==1]=0
|
|
|
|
#seg[seg_test==1]=1
|
|
|
|
#seg[seg_test==1]=1
|
|
|
|
seg[seg_not_base==1]=4
|
|
|
|
seg[seg_not_base==1]=4
|
|
|
|
seg[seg_background==1]=0
|
|
|
|
if not self.extract_only_images:
|
|
|
|
|
|
|
|
seg[seg_background==1]=0
|
|
|
|
seg[(seg_line==1) & (seg==0)]=3
|
|
|
|
seg[(seg_line==1) & (seg==0)]=3
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
|
|
|
|
|
|
@ -1573,6 +1618,60 @@ class Eynollah:
|
|
|
|
q.put(slopes_sub)
|
|
|
|
q.put(slopes_sub)
|
|
|
|
poly.put(poly_sub)
|
|
|
|
poly.put(poly_sub)
|
|
|
|
box_sub.put(boxes_sub_new)
|
|
|
|
box_sub.put(boxes_sub_new)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_regions_light_v_extract_only_images(self,img,is_image_enhanced, num_col_classifier):
|
|
|
|
|
|
|
|
self.logger.debug("enter get_regions_light_v")
|
|
|
|
|
|
|
|
erosion_hurts = False
|
|
|
|
|
|
|
|
img_org = np.copy(img)
|
|
|
|
|
|
|
|
img_height_h = img_org.shape[0]
|
|
|
|
|
|
|
|
img_width_h = img_org.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_resized = np.copy(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light_only_images_extraction)
|
|
|
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_lines_only = (prediction_regions_org[:,:] ==3)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_texts_only = (prediction_regions_org[:,:] ==1)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_images_only=(prediction_regions_org[:,:] ==2)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only)
|
|
|
|
|
|
|
|
polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true = np.zeros(prediction_regions_org.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return text_regions_p_true, erosion_hurts, polygons_lines_xml, polygons_of_images
|
|
|
|
def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier):
|
|
|
|
def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier):
|
|
|
|
self.logger.debug("enter get_regions_light_v")
|
|
|
|
self.logger.debug("enter get_regions_light_v")
|
|
|
|
erosion_hurts = False
|
|
|
|
erosion_hurts = False
|
|
|
@ -2825,6 +2924,8 @@ class Eynollah:
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.extract_only_images = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t0_tot = time.time()
|
|
|
|
t0_tot = time.time()
|
|
|
|
|
|
|
|
|
|
|
@ -2836,272 +2937,286 @@ class Eynollah:
|
|
|
|
if self.dir_in:
|
|
|
|
if self.dir_in:
|
|
|
|
self.reset_file_name_dir(os.path.join(self.dir_in,img_name))
|
|
|
|
self.reset_file_name_dir(os.path.join(self.dir_in,img_name))
|
|
|
|
|
|
|
|
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
|
|
|
|
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
if self.extract_only_images:
|
|
|
|
if self.light_version:
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea)
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml,polygons_of_images = self.get_regions_light_v_extract_only_images(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
#self.logger.info("Textregion detection took %.1fs ", time.time() - t1t)
|
|
|
|
#self.logger.info("Textregion detection took %.1fs ", time.time() - t1t)
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea = \
|
|
|
|
|
|
|
|
self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts)
|
|
|
|
if self.plotter:
|
|
|
|
#self.logger.info("run graphics %.1fs ", time.time() - t1t)
|
|
|
|
self.plotter.write_images_into_directory(polygons_of_images, img_res)
|
|
|
|
textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea)
|
|
|
|
#plt.imshow(text_regions_p_1)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
|
|
|
|
self.logger.info("Textregion detection took %.1fs ", time.time() - t1)
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction = \
|
|
|
|
if self.light_version:
|
|
|
|
self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts)
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
self.logger.info("Graphics detection took %.1fs ", time.time() - t1)
|
|
|
|
slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea)
|
|
|
|
#self.logger.info('cont_page %s', cont_page)
|
|
|
|
#self.logger.info("Textregion detection took %.1fs ", time.time() - t1t)
|
|
|
|
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea = \
|
|
|
|
if not num_col:
|
|
|
|
self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts)
|
|
|
|
self.logger.info("No columns detected, outputting an empty PAGE-XML")
|
|
|
|
#self.logger.info("run graphics %.1fs ", time.time() - t1t)
|
|
|
|
pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], cont_page, [], [])
|
|
|
|
textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea)
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t1)
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
|
|
|
|
self.writer.write_pagexml(pcgts)
|
|
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
return pcgts
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
|
|
|
|
self.logger.info("Textregion detection took %.1fs ", time.time() - t1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction = \
|
|
|
|
|
|
|
|
self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts)
|
|
|
|
|
|
|
|
self.logger.info("Graphics detection took %.1fs ", time.time() - t1)
|
|
|
|
|
|
|
|
#self.logger.info('cont_page %s', cont_page)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not num_col:
|
|
|
|
|
|
|
|
self.logger.info("No columns detected, outputting an empty PAGE-XML")
|
|
|
|
|
|
|
|
pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], cont_page, [], [])
|
|
|
|
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t1)
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
|
|
|
|
self.writer.write_pagexml(pcgts)
|
|
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return pcgts
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
if not self.light_version:
|
|
|
|
if not self.light_version:
|
|
|
|
textline_mask_tot_ea = self.run_textline(image_page)
|
|
|
|
textline_mask_tot_ea = self.run_textline(image_page)
|
|
|
|
self.logger.info("textline detection took %.1fs", time.time() - t1)
|
|
|
|
self.logger.info("textline detection took %.1fs", time.time() - t1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea)
|
|
|
|
|
|
|
|
self.logger.info("deskewing took %.1fs", time.time() - t1)
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea)
|
|
|
|
#plt.imshow(table_prediction)
|
|
|
|
self.logger.info("deskewing took %.1fs", time.time() - t1)
|
|
|
|
#plt.show()
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
#plt.imshow(table_prediction)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask_tot, text_regions_p, image_page_rotated = self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction)
|
|
|
|
|
|
|
|
self.logger.info("detection of marginals took %.1fs", time.time() - t1)
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
if not self.full_layout:
|
|
|
|
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.full_layout:
|
|
|
|
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts)
|
|
|
|
|
|
|
|
text_only = ((img_revised_tab[:, :] == 1)) * 1
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask_tot, text_regions_p, image_page_rotated = self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction)
|
|
|
|
|
|
|
|
self.logger.info("detection of marginals took %.1fs", time.time() - t1)
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
if not self.full_layout:
|
|
|
|
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts)
|
|
|
|
|
|
|
|
|
|
|
|
min_con_area = 0.000005
|
|
|
|
if self.full_layout:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts)
|
|
|
|
contours_only_text, hir_on_text = return_contours_of_image(text_only)
|
|
|
|
text_only = ((img_revised_tab[:, :] == 1)) * 1
|
|
|
|
contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text)
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1
|
|
|
|
if len(contours_only_text_parent) > 0:
|
|
|
|
|
|
|
|
areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent])
|
|
|
|
|
|
|
|
areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1])
|
|
|
|
min_con_area = 0.000005
|
|
|
|
#self.logger.info('areas_cnt_text %s', areas_cnt_text)
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)]
|
|
|
|
contours_only_text, hir_on_text = return_contours_of_image(text_only)
|
|
|
|
contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area]
|
|
|
|
contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text)
|
|
|
|
areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area]
|
|
|
|
|
|
|
|
index_con_parents = np.argsort(areas_cnt_text_parent)
|
|
|
|
if len(contours_only_text_parent) > 0:
|
|
|
|
contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents])
|
|
|
|
areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent])
|
|
|
|
areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents])
|
|
|
|
areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1])
|
|
|
|
|
|
|
|
#self.logger.info('areas_cnt_text %s', areas_cnt_text)
|
|
|
|
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest])
|
|
|
|
contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)]
|
|
|
|
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
|
|
|
|
contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area]
|
|
|
|
|
|
|
|
areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area]
|
|
|
|
contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d)
|
|
|
|
index_con_parents = np.argsort(areas_cnt_text_parent)
|
|
|
|
contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d)
|
|
|
|
contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents])
|
|
|
|
|
|
|
|
areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents])
|
|
|
|
areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d])
|
|
|
|
|
|
|
|
areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1])
|
|
|
|
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest])
|
|
|
|
|
|
|
|
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
|
|
|
|
if len(areas_cnt_text_d)>0:
|
|
|
|
|
|
|
|
contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)]
|
|
|
|
contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d)
|
|
|
|
index_con_parents_d = np.argsort(areas_cnt_text_d)
|
|
|
|
contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d)
|
|
|
|
contours_only_text_parent_d = list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d])
|
|
|
|
|
|
|
|
areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d])
|
|
|
|
areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d])
|
|
|
|
|
|
|
|
areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1])
|
|
|
|
cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d])
|
|
|
|
|
|
|
|
cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d)
|
|
|
|
if len(areas_cnt_text_d)>0:
|
|
|
|
try:
|
|
|
|
contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)]
|
|
|
|
if len(cx_bigest_d) >= 5:
|
|
|
|
index_con_parents_d = np.argsort(areas_cnt_text_d)
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-5:]
|
|
|
|
contours_only_text_parent_d = list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d])
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-5:]
|
|
|
|
areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d])
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
|
|
|
|
ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d)
|
|
|
|
cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d])
|
|
|
|
else:
|
|
|
|
cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d)
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):]
|
|
|
|
try:
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):]
|
|
|
|
if len(cx_bigest_d) >= 5:
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-5:]
|
|
|
|
ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d)
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-5:]
|
|
|
|
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
cx_bigest_d_big[0] = cx_bigest_d[ind_largest]
|
|
|
|
ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d)
|
|
|
|
cy_biggest_d_big[0] = cy_biggest_d[ind_largest]
|
|
|
|
else:
|
|
|
|
except Exception as why:
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):]
|
|
|
|
self.logger.error(why)
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):]
|
|
|
|
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
(h, w) = text_only.shape[:2]
|
|
|
|
ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d)
|
|
|
|
center = (w // 2.0, h // 2.0)
|
|
|
|
|
|
|
|
M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0)
|
|
|
|
cx_bigest_d_big[0] = cx_bigest_d[ind_largest]
|
|
|
|
M_22 = np.array(M)[:2, :2]
|
|
|
|
cy_biggest_d_big[0] = cy_biggest_d[ind_largest]
|
|
|
|
p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big])
|
|
|
|
except Exception as why:
|
|
|
|
x_diff = p_big[0] - cx_bigest_d_big
|
|
|
|
self.logger.error(why)
|
|
|
|
y_diff = p_big[1] - cy_biggest_d_big
|
|
|
|
|
|
|
|
|
|
|
|
(h, w) = text_only.shape[:2]
|
|
|
|
|
|
|
|
center = (w // 2.0, h // 2.0)
|
|
|
|
|
|
|
|
M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0)
|
|
|
|
|
|
|
|
M_22 = np.array(M)[:2, :2]
|
|
|
|
|
|
|
|
p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big])
|
|
|
|
|
|
|
|
x_diff = p_big[0] - cx_bigest_d_big
|
|
|
|
|
|
|
|
y_diff = p_big[1] - cy_biggest_d_big
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
|
|
|
for i in range(len(contours_only_text_parent)):
|
|
|
|
|
|
|
|
p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]])
|
|
|
|
|
|
|
|
p[0] = p[0] - x_diff[0]
|
|
|
|
|
|
|
|
p[1] = p[1] - y_diff[0]
|
|
|
|
|
|
|
|
dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))]
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)])
|
|
|
|
|
|
|
|
# img2=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
|
|
|
|
|
|
# img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1))
|
|
|
|
|
|
|
|
# plt.imshow(img2[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
|
|
|
contours_only_text_parent_d = []
|
|
|
|
|
|
|
|
contours_only_text_parent = []
|
|
|
|
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
|
|
|
for i in range(len(contours_only_text_parent)):
|
|
|
|
|
|
|
|
p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]])
|
|
|
|
|
|
|
|
p[0] = p[0] - x_diff[0]
|
|
|
|
|
|
|
|
p[1] = p[1] - y_diff[0]
|
|
|
|
|
|
|
|
dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))]
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)])
|
|
|
|
|
|
|
|
# img2=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
|
|
|
|
|
|
# img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1))
|
|
|
|
|
|
|
|
# plt.imshow(img2[:,:,0])
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
contours_only_text_parent_d = []
|
|
|
|
contours_only_text_parent_d = []
|
|
|
|
contours_only_text_parent = []
|
|
|
|
contours_only_text_parent = []
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
|
|
|
contours_only_text_parent_d = []
|
|
|
|
|
|
|
|
contours_only_text_parent = []
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
contours_only_text, hir_on_text = return_contours_of_image(text_only)
|
|
|
|
|
|
|
|
contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(contours_only_text_parent) > 0:
|
|
|
|
|
|
|
|
areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent])
|
|
|
|
|
|
|
|
areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)]
|
|
|
|
|
|
|
|
contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area]
|
|
|
|
|
|
|
|
areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
index_con_parents = np.argsort(areas_cnt_text_parent)
|
|
|
|
|
|
|
|
contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents])
|
|
|
|
|
|
|
|
areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest])
|
|
|
|
|
|
|
|
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
|
|
|
|
|
|
|
|
#self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent)
|
|
|
|
|
|
|
|
# self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d)
|
|
|
|
|
|
|
|
# self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d))
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
contours_only_text, hir_on_text = return_contours_of_image(text_only)
|
|
|
|
if self.light_version:
|
|
|
|
contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text)
|
|
|
|
txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first)
|
|
|
|
|
|
|
|
else:
|
|
|
|
if len(contours_only_text_parent) > 0:
|
|
|
|
txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first)
|
|
|
|
areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent])
|
|
|
|
boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent)
|
|
|
|
areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1])
|
|
|
|
boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals)
|
|
|
|
|
|
|
|
|
|
|
|
contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)]
|
|
|
|
if not self.curved_line:
|
|
|
|
contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area]
|
|
|
|
if self.light_version:
|
|
|
|
areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area]
|
|
|
|
if self.textline_light:
|
|
|
|
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
index_con_parents = np.argsort(areas_cnt_text_parent)
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents])
|
|
|
|
|
|
|
|
areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest])
|
|
|
|
|
|
|
|
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
|
|
|
|
|
|
|
|
#self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent)
|
|
|
|
|
|
|
|
# self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d)
|
|
|
|
|
|
|
|
# self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d))
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
pass
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
if self.light_version:
|
|
|
|
|
|
|
|
txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first)
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent)
|
|
|
|
|
|
|
|
boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals)
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scale_param = 1
|
|
|
|
|
|
|
|
all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew)
|
|
|
|
|
|
|
|
all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
|
|
|
|
all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew)
|
|
|
|
|
|
|
|
all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.full_layout:
|
|
|
|
if not self.curved_line:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con])
|
|
|
|
|
|
|
|
if self.light_version:
|
|
|
|
if self.light_version:
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
if self.textline_light:
|
|
|
|
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
#takes long timee
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = None
|
|
|
|
scale_param = 1
|
|
|
|
if self.light_version:
|
|
|
|
all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew)
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
|
|
|
|
all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew)
|
|
|
|
|
|
|
|
all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.full_layout:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con])
|
|
|
|
|
|
|
|
if self.light_version:
|
|
|
|
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
#takes long timee
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = None
|
|
|
|
|
|
|
|
if self.light_version:
|
|
|
|
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
|
|
|
|
|
|
|
|
if self.plotter:
|
|
|
|
if self.plotter:
|
|
|
|
self.plotter.save_plot_of_layout(text_regions_p, image_page)
|
|
|
|
self.plotter.save_plot_of_layout(text_regions_p, image_page)
|
|
|
|
self.plotter.save_plot_of_layout_all(text_regions_p, image_page)
|
|
|
|
self.plotter.save_plot_of_layout_all(text_regions_p, image_page)
|
|
|
|
|
|
|
|
|
|
|
|
pixel_img = 4
|
|
|
|
pixel_img = 4
|
|
|
|
polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img)
|
|
|
|
polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img)
|
|
|
|
all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, kernel=KERNEL, curved_line=self.curved_line)
|
|
|
|
all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, kernel=KERNEL, curved_line=self.curved_line)
|
|
|
|
pixel_lines = 6
|
|
|
|
pixel_lines = 6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not self.headers_off:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h_d_ordered)
|
|
|
|
|
|
|
|
elif self.headers_off:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
regions_without_separators = regions_without_separators.astype(np.uint8)
|
|
|
|
|
|
|
|
regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
regions_without_separators_d = regions_without_separators_d.astype(np.uint8)
|
|
|
|
|
|
|
|
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not self.headers_off:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h)
|
|
|
|
boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h_d_ordered)
|
|
|
|
boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left)
|
|
|
|
elif self.headers_off:
|
|
|
|
|
|
|
|
|
|
|
|
#print(boxes_d,'boxes_d')
|
|
|
|
|
|
|
|
#img_once = np.zeros((textline_mask_tot_d.shape[0],textline_mask_tot_d.shape[1]))
|
|
|
|
|
|
|
|
#for box_i in boxes_d:
|
|
|
|
|
|
|
|
#img_once[int(box_i[2]):int(box_i[3]),int(box_i[0]):int(box_i[1]) ] =1
|
|
|
|
|
|
|
|
#plt.imshow(img_once)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
#print(np.unique(img_once),'img_once')
|
|
|
|
|
|
|
|
if self.plotter:
|
|
|
|
|
|
|
|
self.plotter.write_images_into_directory(polygons_of_images, image_page)
|
|
|
|
|
|
|
|
t_order = time.time()
|
|
|
|
|
|
|
|
if self.full_layout:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines)
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines)
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d)
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml)
|
|
|
|
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
##return pcgts
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
contours_only_text_parent_h = None
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
regions_without_separators = regions_without_separators.astype(np.uint8)
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
|
|
|
|
regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
regions_without_separators_d = regions_without_separators_d.astype(np.uint8)
|
|
|
|
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con])
|
|
|
|
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d)
|
|
|
|
|
|
|
|
pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables)
|
|
|
|
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
##return pcgts
|
|
|
|
boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left)
|
|
|
|
self.writer.write_pagexml(pcgts)
|
|
|
|
else:
|
|
|
|
#self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(boxes_d,'boxes_d')
|
|
|
|
|
|
|
|
#img_once = np.zeros((textline_mask_tot_d.shape[0],textline_mask_tot_d.shape[1]))
|
|
|
|
|
|
|
|
#for box_i in boxes_d:
|
|
|
|
|
|
|
|
#img_once[int(box_i[2]):int(box_i[3]),int(box_i[0]):int(box_i[1]) ] =1
|
|
|
|
|
|
|
|
#plt.imshow(img_once)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
#print(np.unique(img_once),'img_once')
|
|
|
|
|
|
|
|
if self.plotter:
|
|
|
|
|
|
|
|
self.plotter.write_images_into_directory(polygons_of_images, image_page)
|
|
|
|
|
|
|
|
t_order = time.time()
|
|
|
|
|
|
|
|
if self.full_layout:
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml)
|
|
|
|
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
##return pcgts
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
contours_only_text_parent_h = None
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con])
|
|
|
|
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d)
|
|
|
|
|
|
|
|
pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables)
|
|
|
|
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
##return pcgts
|
|
|
|
|
|
|
|
self.writer.write_pagexml(pcgts)
|
|
|
|
|
|
|
|
#self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
if self.dir_in:
|
|
|
|
self.logger.info("All jobs done in %.1fs", time.time() - t0_tot)
|
|
|
|
self.logger.info("All jobs done in %.1fs", time.time() - t0_tot)
|
|
|
|