mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-07-05 17:09:57 +02:00
Compare commits
13 commits
Author | SHA1 | Date | |
---|---|---|---|
|
3dcbb20cac | ||
|
e9179e1d34 | ||
|
f8b4d29a59 | ||
|
e2da7a6239 | ||
|
b227736094 | ||
|
4cb4414740 | ||
|
208bde706f | ||
|
3e8adb86c2 | ||
|
77dae129d5 | ||
|
b4df978dd5 | ||
|
30ba234641 | ||
|
41318f0404 | ||
|
a22df11ebb |
7 changed files with 176 additions and 193 deletions
24
.github/workflows/pypi.yml
vendored
Normal file
24
.github/workflows/pypi.yml
vendored
Normal file
|
@ -0,0 +1,24 @@
|
|||
name: PyPI CD
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
pypi-publish:
|
||||
name: upload release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# IMPORTANT: this permission is mandatory for Trusted Publishing
|
||||
id-token: write
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
- name: Build package
|
||||
run: make build
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
verbose: true
|
|
@ -5,6 +5,10 @@ Versioned according to [Semantic Versioning](http://semver.org/).
|
|||
|
||||
## Unreleased
|
||||
|
||||
Fixed:
|
||||
|
||||
* restoring the contour in the original image caused an error due to an empty tuple
|
||||
|
||||
## [0.4.0] - 2025-04-07
|
||||
|
||||
Fixed:
|
||||
|
|
|
@ -36,6 +36,8 @@ COPY . .
|
|||
COPY ocrd-tool.json .
|
||||
# prepackage ocrd-tool.json as ocrd-all-tool.json
|
||||
RUN ocrd ocrd-tool ocrd-tool.json dump-tools > $(dirname $(ocrd bashlib filename))/ocrd-all-tool.json
|
||||
# prepackage ocrd-all-module-dir.json
|
||||
RUN ocrd ocrd-tool ocrd-tool.json dump-module-dirs > $(dirname $(ocrd bashlib filename))/ocrd-all-module-dir.json
|
||||
# install everything and reduce image size
|
||||
RUN make install EXTRAS=OCR && rm -rf /build/eynollah
|
||||
# smoke test
|
||||
|
|
7
Makefile
7
Makefile
|
@ -3,8 +3,9 @@ PIP ?= pip3
|
|||
EXTRAS ?=
|
||||
|
||||
# DOCKER_BASE_IMAGE = artefakt.dev.sbb.berlin:5000/sbb/ocrd_core:v2.68.0
|
||||
DOCKER_BASE_IMAGE = docker.io/ocrd/core-cuda-tf2:v3.3.0
|
||||
DOCKER_TAG = ocrd/eynollah
|
||||
DOCKER_BASE_IMAGE ?= docker.io/ocrd/core-cuda-tf2:latest
|
||||
DOCKER_TAG ?= ocrd/eynollah
|
||||
DOCKER ?= docker
|
||||
|
||||
#SEG_MODEL := https://qurator-data.de/eynollah/2021-04-25/models_eynollah.tar.gz
|
||||
#SEG_MODEL := https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed.tar.gz
|
||||
|
@ -117,7 +118,7 @@ coverage:
|
|||
|
||||
# Build docker image
|
||||
docker:
|
||||
docker build \
|
||||
$(DOCKER) build \
|
||||
--build-arg DOCKER_BASE_IMAGE=$(DOCKER_BASE_IMAGE) \
|
||||
--build-arg VCS_REF=$$(git rev-parse --short HEAD) \
|
||||
--build-arg BUILD_DATE=$$(date -u +"%Y-%m-%dT%H:%M:%SZ") \
|
||||
|
|
|
@ -3320,12 +3320,22 @@ class Eynollah:
|
|||
def do_order_of_regions_with_model(self, contours_only_text_parent, contours_only_text_parent_h, text_regions_p):
|
||||
y_len = text_regions_p.shape[0]
|
||||
x_len = text_regions_p.shape[1]
|
||||
|
||||
|
||||
img_poly = np.zeros((y_len,x_len), dtype='uint8')
|
||||
img_poly[text_regions_p[:,:]==1] = 1
|
||||
img_poly[text_regions_p[:,:]==2] = 2
|
||||
img_poly[text_regions_p[:,:]==3] = 4
|
||||
img_poly[text_regions_p[:,:]==6] = 5
|
||||
|
||||
|
||||
#temp
|
||||
sep_mask = (img_poly==5)*1
|
||||
sep_mask = sep_mask.astype('uint8')
|
||||
sep_mask = cv2.erode(sep_mask, kernel=KERNEL, iterations=2)
|
||||
img_poly[img_poly==5] = 0
|
||||
img_poly[sep_mask==1] = 5
|
||||
#
|
||||
|
||||
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
|
||||
if contours_only_text_parent_h:
|
||||
|
@ -3341,9 +3351,13 @@ class Eynollah:
|
|||
if not len(co_text_all):
|
||||
return [], []
|
||||
|
||||
labels_con = np.zeros((y_len, x_len, len(co_text_all)), dtype=bool)
|
||||
labels_con = np.zeros((int(y_len /6.), int(x_len/6.), len(co_text_all)), dtype=bool)
|
||||
co_text_all = [(i/6).astype(int) for i in co_text_all]
|
||||
for i in range(len(co_text_all)):
|
||||
img = labels_con[:,:,i].astype(np.uint8)
|
||||
|
||||
#img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
cv2.fillPoly(img, pts=[co_text_all[i]], color=(1,))
|
||||
labels_con[:,:,i] = img
|
||||
|
||||
|
@ -3359,6 +3373,7 @@ class Eynollah:
|
|||
labels_con = resize_image(labels_con.astype(np.uint8), height1, width1).astype(bool)
|
||||
img_header_and_sep = resize_image(img_header_and_sep, height1, width1)
|
||||
img_poly = resize_image(img_poly, height3, width3)
|
||||
|
||||
|
||||
inference_bs = 3
|
||||
input_1 = np.zeros((inference_bs, height1, width1, 3))
|
||||
|
@ -4575,10 +4590,6 @@ class Eynollah:
|
|||
return pcgts
|
||||
|
||||
|
||||
## check the ro order
|
||||
|
||||
|
||||
|
||||
|
||||
#print("text region early 3 in %.1fs", time.time() - t0)
|
||||
if self.light_version:
|
||||
|
@ -4886,7 +4897,7 @@ class Eynollah_ocr:
|
|||
self.model_ocr.to(self.device)
|
||||
|
||||
else:
|
||||
self.model_ocr_dir = dir_models + "/model_step_75000_ocr"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
|
||||
self.model_ocr_dir = dir_models + "/model_step_1050000_ocr"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
|
||||
model_ocr = load_model(self.model_ocr_dir , compile=False)
|
||||
|
||||
self.prediction_model = tf.keras.models.Model(
|
||||
|
@ -4974,7 +4985,7 @@ class Eynollah_ocr:
|
|||
def return_start_and_end_of_common_text_of_textline_ocr_without_common_section(self, textline_image):
|
||||
width = np.shape(textline_image)[1]
|
||||
height = np.shape(textline_image)[0]
|
||||
common_window = int(0.06*width)
|
||||
common_window = int(0.22*width)
|
||||
|
||||
width1 = int ( width/2. - common_window )
|
||||
width2 = int ( width/2. + common_window )
|
||||
|
@ -4984,13 +4995,17 @@ class Eynollah_ocr:
|
|||
|
||||
peaks_real, _ = find_peaks(sum_smoothed, height=0)
|
||||
|
||||
if len(peaks_real)>70:
|
||||
if len(peaks_real)>35:
|
||||
|
||||
peaks_real = peaks_real[(peaks_real<width2) & (peaks_real>width1)]
|
||||
#peaks_real = peaks_real[(peaks_real<width2) & (peaks_real>width1)]
|
||||
argsort = np.argsort(sum_smoothed[peaks_real])[::-1]
|
||||
peaks_real_top_six = peaks_real[argsort[:6]]
|
||||
midpoint = textline_image.shape[1] / 2.
|
||||
arg_closest = np.argmin(np.abs(peaks_real_top_six - midpoint))
|
||||
|
||||
arg_max = np.argmax(sum_smoothed[peaks_real])
|
||||
#arg_max = np.argmax(sum_smoothed[peaks_real])
|
||||
|
||||
peaks_final = peaks_real[arg_max]
|
||||
peaks_final = peaks_real_top_six[arg_closest]#peaks_real[arg_max]
|
||||
|
||||
return peaks_final
|
||||
else:
|
||||
|
@ -5038,10 +5053,19 @@ class Eynollah_ocr:
|
|||
|
||||
if width_new == 0:
|
||||
width_new = img.shape[1]
|
||||
|
||||
##if width_new+32 >= image_width:
|
||||
##width_new = width_new - 32
|
||||
|
||||
###patch_zero = np.zeros((32, 32, 3))#+255
|
||||
###patch_zero[9:19,8:18,:] = 0
|
||||
|
||||
|
||||
img = resize_image(img, image_height, width_new)
|
||||
img_fin = np.ones((image_height, image_width, 3))*255
|
||||
img_fin[:,:+width_new,:] = img[:,:,:]
|
||||
###img_fin[:,:32,:] = patch_zero[:,:,:]
|
||||
###img_fin[:,32:32+width_new,:] = img[:,:,:]
|
||||
img_fin[:,:width_new,:] = img[:,:,:]
|
||||
img_fin = img_fin / 255.
|
||||
return img_fin
|
||||
|
||||
|
@ -5097,7 +5121,7 @@ class Eynollah_ocr:
|
|||
img_crop = img_poly_on_img[y:y+h, x:x+w, :]
|
||||
img_crop[mask_poly==0] = 255
|
||||
|
||||
if h2w_ratio > 0.05:
|
||||
if h2w_ratio > 0.1:
|
||||
cropped_lines.append(img_crop)
|
||||
cropped_lines_meging_indexing.append(0)
|
||||
else:
|
||||
|
@ -5234,7 +5258,7 @@ class Eynollah_ocr:
|
|||
if self.draw_texts_on_image:
|
||||
total_bb_coordinates.append([x,y,w,h])
|
||||
|
||||
h2w_ratio = h/float(w)
|
||||
w_scaled = w * image_height/float(h)
|
||||
|
||||
img_poly_on_img = np.copy(img)
|
||||
if self.prediction_with_both_of_rgb_and_bin:
|
||||
|
@ -5252,7 +5276,7 @@ class Eynollah_ocr:
|
|||
img_crop_bin[mask_poly==0] = 255
|
||||
|
||||
if not self.export_textline_images_and_text:
|
||||
if h2w_ratio > 0.1:
|
||||
if w_scaled < 1.5*image_width:
|
||||
img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(img_crop, image_height, image_width)
|
||||
cropped_lines.append(img_fin)
|
||||
cropped_lines_meging_indexing.append(0)
|
||||
|
@ -5334,11 +5358,11 @@ class Eynollah_ocr:
|
|||
if self.prediction_with_both_of_rgb_and_bin:
|
||||
preds_bin = self.prediction_model.predict(imgs_bin, verbose=0)
|
||||
preds = (preds + preds_bin) / 2.
|
||||
|
||||
|
||||
pred_texts = self.decode_batch_predictions(preds)
|
||||
|
||||
for ib in range(imgs.shape[0]):
|
||||
pred_texts_ib = pred_texts[ib].strip("[UNK]")
|
||||
pred_texts_ib = pred_texts[ib].replace("[UNK]", "")
|
||||
extracted_texts.append(pred_texts_ib)
|
||||
|
||||
extracted_texts_merged = [extracted_texts[ind] if cropped_lines_meging_indexing[ind]==0 else extracted_texts[ind]+" "+extracted_texts[ind+1] if cropped_lines_meging_indexing[ind]==1 else None for ind in range(len(cropped_lines_meging_indexing))]
|
||||
|
@ -5378,7 +5402,7 @@ class Eynollah_ocr:
|
|||
text_by_textregion = []
|
||||
for ind in unique_cropped_lines_region_indexer:
|
||||
extracted_texts_merged_un = np.array(extracted_texts_merged)[np.array(cropped_lines_region_indexer)==ind]
|
||||
text_by_textregion.append(" ".join(extracted_texts_merged_un))
|
||||
text_by_textregion.append("".join(extracted_texts_merged_un))
|
||||
|
||||
indexer = 0
|
||||
indexer_textregion = 0
|
||||
|
|
|
@ -230,7 +230,6 @@ def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first):
|
|||
def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first, confidence_matrix):
|
||||
img_copy = np.zeros(img.shape)
|
||||
img_copy = cv2.fillPoly(img_copy, pts=[contour_par], color=(1, 1, 1))
|
||||
|
||||
confidence_matrix_mapped_with_contour = confidence_matrix * img_copy[:,:,0]
|
||||
confidence_contour = np.sum(confidence_matrix_mapped_with_contour) / float(np.sum(img_copy[:,:,0]))
|
||||
|
||||
|
@ -239,9 +238,13 @@ def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first
|
|||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||
|
||||
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
|
||||
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
|
||||
# print(np.shape(cont_int[0]))
|
||||
if len(cont_int)==0:
|
||||
cont_int = []
|
||||
cont_int.append(contour_par)
|
||||
confidence_contour = 0
|
||||
else:
|
||||
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
|
||||
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
|
||||
return cont_int[0], index_r_con, confidence_contour
|
||||
|
||||
def get_textregion_contours_in_org_image_light(cnts, img, slope_first, confidence_matrix, map=map):
|
||||
|
|
|
@ -102,14 +102,15 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
|
|||
textline_con_fil = filter_contours_area_of_image(img_patch,
|
||||
textline_con, hierarchy,
|
||||
max_area=1, min_area=0.0008)
|
||||
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
||||
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
||||
# print(sigma_gaus,'sigma_gaus')
|
||||
if len(np.diff(peaks_new_tot))>1:
|
||||
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
||||
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
||||
else:
|
||||
sigma_gaus = 12
|
||||
except:
|
||||
sigma_gaus = 12
|
||||
if sigma_gaus < 3:
|
||||
sigma_gaus = 3
|
||||
# print(sigma_gaus,'sigma')
|
||||
|
||||
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
|
||||
y_padded_up_to_down = -y_padded + np.max(y_padded)
|
||||
|
@ -137,7 +138,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
||||
x_d = M[0, 2]
|
||||
y_d = M[1, 2]
|
||||
|
||||
thetha = thetha / 180. * np.pi
|
||||
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
||||
contour_text_interest_copy = contour_text_interest.copy()
|
||||
|
@ -162,73 +162,73 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
x = np.array(range(len(y)))
|
||||
|
||||
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
||||
if 1>0:
|
||||
try:
|
||||
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
|
||||
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
|
||||
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
|
||||
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
|
||||
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
||||
|
||||
|
||||
try:
|
||||
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
|
||||
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
|
||||
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
|
||||
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
|
||||
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
||||
|
||||
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
||||
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
||||
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
||||
|
||||
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
||||
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
||||
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
||||
arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3]
|
||||
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
||||
|
||||
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
||||
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
||||
peaks_new=peaks_e[:]
|
||||
peaks_neg_new=peaks_neg_e[:]
|
||||
|
||||
arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3]
|
||||
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
||||
|
||||
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
||||
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
||||
clusters_to_be_deleted=[]
|
||||
if len(arg_diff_cluster)>0:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
||||
for i in range(len(arg_diff_cluster)-1):
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
|
||||
arg_diff_cluster[i+1]+1])
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
||||
if len(clusters_to_be_deleted)>0:
|
||||
peaks_new_extra=[]
|
||||
for m in range(len(clusters_to_be_deleted)):
|
||||
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
|
||||
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
|
||||
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
||||
for m1 in range(len(clusters_to_be_deleted[m])):
|
||||
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
|
||||
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
|
||||
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
||||
peaks_new_tot=[]
|
||||
for i1 in peaks_new:
|
||||
peaks_new_tot.append(i1)
|
||||
for i1 in peaks_new_extra:
|
||||
peaks_new_tot.append(i1)
|
||||
peaks_new_tot=np.sort(peaks_new_tot)
|
||||
else:
|
||||
peaks_new_tot=peaks_e[:]
|
||||
|
||||
peaks_new=peaks_e[:]
|
||||
peaks_neg_new=peaks_neg_e[:]
|
||||
textline_con,hierarchy=return_contours_of_image(img_patch)
|
||||
textline_con_fil=filter_contours_area_of_image(img_patch,
|
||||
textline_con, hierarchy,
|
||||
max_area=1, min_area=0.0008)
|
||||
|
||||
clusters_to_be_deleted=[]
|
||||
if len(arg_diff_cluster)>0:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
||||
for i in range(len(arg_diff_cluster)-1):
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
|
||||
arg_diff_cluster[i+1]+1])
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
||||
if len(clusters_to_be_deleted)>0:
|
||||
peaks_new_extra=[]
|
||||
for m in range(len(clusters_to_be_deleted)):
|
||||
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
|
||||
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
|
||||
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
||||
for m1 in range(len(clusters_to_be_deleted[m])):
|
||||
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
|
||||
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
|
||||
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
||||
peaks_new_tot=[]
|
||||
for i1 in peaks_new:
|
||||
peaks_new_tot.append(i1)
|
||||
for i1 in peaks_new_extra:
|
||||
peaks_new_tot.append(i1)
|
||||
peaks_new_tot=np.sort(peaks_new_tot)
|
||||
else:
|
||||
peaks_new_tot=peaks_e[:]
|
||||
|
||||
textline_con,hierarchy=return_contours_of_image(img_patch)
|
||||
textline_con_fil=filter_contours_area_of_image(img_patch,
|
||||
textline_con, hierarchy,
|
||||
max_area=1, min_area=0.0008)
|
||||
if len(np.diff(peaks_new_tot))>0:
|
||||
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
|
||||
sigma_gaus=int( y_diff_mean * (7./40.0) )
|
||||
#print(sigma_gaus,'sigma_gaus')
|
||||
except:
|
||||
else:
|
||||
sigma_gaus=12
|
||||
if sigma_gaus<3:
|
||||
sigma_gaus=3
|
||||
#print(sigma_gaus,'sigma')
|
||||
|
||||
except:
|
||||
sigma_gaus=12
|
||||
if sigma_gaus<3:
|
||||
sigma_gaus=3
|
||||
|
||||
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
|
||||
y_padded_up_to_down=-y_padded+np.max(y_padded)
|
||||
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
|
||||
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
|
||||
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
||||
|
||||
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
||||
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
||||
|
||||
|
@ -239,6 +239,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
|
||||
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
||||
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
||||
|
||||
except:
|
||||
arg_neg_must_be_deleted=[]
|
||||
arg_diff_cluster=[]
|
||||
|
@ -246,7 +247,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
peaks_new=peaks[:]
|
||||
peaks_neg_new=peaks_neg[:]
|
||||
clusters_to_be_deleted=[]
|
||||
|
||||
if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
||||
for i in range(len(arg_diff_cluster)-1):
|
||||
|
@ -275,21 +275,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
peaks_new_tot.append(i1)
|
||||
peaks_new_tot=np.sort(peaks_new_tot)
|
||||
|
||||
##plt.plot(y_padded_up_to_down_padded)
|
||||
##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
|
||||
##plt.show()
|
||||
|
||||
##plt.plot(y_padded_up_to_down_padded)
|
||||
##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
|
||||
##plt.show()
|
||||
|
||||
##plt.plot(y_padded_smoothed)
|
||||
##plt.plot(peaks,y_padded_smoothed[peaks],'*')
|
||||
##plt.show()
|
||||
|
||||
##plt.plot(y_padded_smoothed)
|
||||
##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
|
||||
##plt.show()
|
||||
peaks=peaks_new_tot[:]
|
||||
peaks_neg=peaks_neg_new[:]
|
||||
else:
|
||||
|
@ -298,11 +283,13 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
peaks_neg=peaks_neg_new[:]
|
||||
except:
|
||||
pass
|
||||
|
||||
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
|
||||
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
|
||||
if len(y_padded_smoothed[peaks]) > 1:
|
||||
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
|
||||
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
|
||||
else:
|
||||
mean_value_of_peaks = np.nan
|
||||
std_value_of_peaks = np.nan
|
||||
peaks_values=y_padded_smoothed[peaks]
|
||||
|
||||
peaks_neg = peaks_neg - 20 - 20
|
||||
peaks = peaks - 20
|
||||
for jj in range(len(peaks_neg)):
|
||||
|
@ -345,7 +332,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
point_down_narrow = peaks[jj] + first_nonzero + int(
|
||||
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
||||
|
||||
|
||||
if point_down_narrow >= img_patch.shape[0]:
|
||||
point_down_narrow = img_patch.shape[0] - 2
|
||||
|
||||
|
@ -601,7 +587,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|||
[int(x_max), int(point_up)],
|
||||
[int(x_max), int(point_down)],
|
||||
[int(x_min), int(point_down)]]))
|
||||
|
||||
return peaks, textline_boxes_rot
|
||||
|
||||
def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
||||
|
@ -633,7 +618,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
|||
peaks_neg_new = peaks_neg[:]
|
||||
clusters_to_be_deleted = []
|
||||
|
||||
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
|
||||
if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
|
||||
for i in range(len(arg_diff_cluster) - 1):
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
|
||||
|
@ -641,7 +626,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
|||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
|
||||
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
||||
if len(arg_neg_must_be_deleted) == 1:
|
||||
else:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
||||
if len(clusters_to_be_deleted) > 0:
|
||||
peaks_new_extra = []
|
||||
|
@ -667,9 +652,14 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
|||
peaks_new_tot = peaks[:]
|
||||
peaks = peaks_new_tot[:]
|
||||
peaks_neg = peaks_neg_new[:]
|
||||
|
||||
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
|
||||
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
|
||||
|
||||
if len(y_padded_smoothed[peaks])>1:
|
||||
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
|
||||
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
|
||||
else:
|
||||
mean_value_of_peaks = np.nan
|
||||
std_value_of_peaks = np.nan
|
||||
|
||||
peaks_values = y_padded_smoothed[peaks]
|
||||
|
||||
peaks_neg = peaks_neg - 20 - 20
|
||||
|
@ -687,7 +677,6 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
|||
textline_boxes_rot = []
|
||||
|
||||
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
|
||||
# print('11')
|
||||
for jj in range(len(peaks)):
|
||||
|
||||
if jj == (len(peaks) - 1):
|
||||
|
@ -994,15 +983,16 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
|
|||
textline_con_fil = filter_contours_area_of_image(img_patch,
|
||||
textline_con, hierarchy,
|
||||
max_area=1, min_area=0.0008)
|
||||
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
||||
if len(np.diff(peaks_new_tot)):
|
||||
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
||||
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
||||
else:
|
||||
sigma_gaus = 12
|
||||
|
||||
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
||||
# print(sigma_gaus,'sigma_gaus')
|
||||
except:
|
||||
sigma_gaus = 12
|
||||
if sigma_gaus < 3:
|
||||
sigma_gaus = 3
|
||||
# print(sigma_gaus,'sigma')
|
||||
|
||||
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
|
||||
y_padded_up_to_down = -y_padded + np.max(y_padded)
|
||||
|
@ -1026,7 +1016,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
|
|||
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
|
||||
|
||||
clusters_to_be_deleted = []
|
||||
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
|
||||
if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
|
||||
for i in range(len(arg_diff_cluster) - 1):
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
|
||||
|
@ -1034,7 +1024,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
|
|||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
|
||||
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
||||
if len(arg_neg_must_be_deleted) == 1:
|
||||
else:
|
||||
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
||||
if len(clusters_to_be_deleted) > 0:
|
||||
peaks_new_extra = []
|
||||
|
@ -1077,9 +1067,14 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
|
|||
peaks_new_tot = peaks[:]
|
||||
peaks = peaks_new_tot[:]
|
||||
peaks_neg = peaks_neg_new[:]
|
||||
|
||||
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
|
||||
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
|
||||
|
||||
if len(y_padded_smoothed[peaks]) > 1:
|
||||
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
|
||||
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
|
||||
else:
|
||||
mean_value_of_peaks = np.nan
|
||||
std_value_of_peaks = np.nan
|
||||
|
||||
peaks_values = y_padded_smoothed[peaks]
|
||||
|
||||
###peaks_neg = peaks_neg - 20 - 20
|
||||
|
@ -1089,10 +1084,8 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
|
|||
|
||||
if len(peaks_neg_true) > 0:
|
||||
peaks_neg_true = np.array(peaks_neg_true)
|
||||
|
||||
peaks_neg_true = peaks_neg_true - 20 - 20
|
||||
|
||||
# print(peaks_neg_true)
|
||||
for i in range(len(peaks_neg_true)):
|
||||
img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
|
||||
else:
|
||||
|
@ -1177,13 +1170,11 @@ def separate_lines_new_inside_tiles(img_path, thetha):
|
|||
if diff_peaks[i] <= cut_off:
|
||||
forest.append(peaks_neg[i + 1])
|
||||
if diff_peaks[i] > cut_off:
|
||||
# print(forest[np.argmin(z[forest]) ] )
|
||||
if not np.isnan(forest[np.argmin(z[forest])]):
|
||||
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
||||
forest = []
|
||||
forest.append(peaks_neg[i + 1])
|
||||
if i == (len(peaks_neg) - 1):
|
||||
# print(print(forest[np.argmin(z[forest]) ] ))
|
||||
if not np.isnan(forest[np.argmin(z[forest])]):
|
||||
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
||||
|
||||
|
@ -1200,17 +1191,14 @@ def separate_lines_new_inside_tiles(img_path, thetha):
|
|||
if diff_peaks_pos[i] <= cut_off:
|
||||
forest.append(peaks[i + 1])
|
||||
if diff_peaks_pos[i] > cut_off:
|
||||
# print(forest[np.argmin(z[forest]) ] )
|
||||
if not np.isnan(forest[np.argmax(z[forest])]):
|
||||
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
||||
forest = []
|
||||
forest.append(peaks[i + 1])
|
||||
if i == (len(peaks) - 1):
|
||||
# print(print(forest[np.argmin(z[forest]) ] ))
|
||||
if not np.isnan(forest[np.argmax(z[forest])]):
|
||||
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
||||
|
||||
# print(len(peaks_neg_true) ,len(peaks_pos_true) ,'lensss')
|
||||
|
||||
if len(peaks_neg_true) > 0:
|
||||
peaks_neg_true = np.array(peaks_neg_true)
|
||||
|
@ -1236,7 +1224,6 @@ def separate_lines_new_inside_tiles(img_path, thetha):
|
|||
"""
|
||||
peaks_neg_true = peaks_neg_true - 20 - 20
|
||||
|
||||
# print(peaks_neg_true)
|
||||
for i in range(len(peaks_neg_true)):
|
||||
img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
|
||||
|
||||
|
@ -1278,7 +1265,6 @@ def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i
|
|||
contours_imgs, hierarchy,
|
||||
max_area=max_area, min_area=min_area)
|
||||
cont_final = []
|
||||
###print(add_boxes_coor_into_textlines,'ikki')
|
||||
for i in range(len(contours_imgs)):
|
||||
img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3))
|
||||
img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255))
|
||||
|
@ -1293,12 +1279,10 @@ def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i
|
|||
##0]
|
||||
##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
|
||||
##if add_boxes_coor_into_textlines:
|
||||
##print(np.shape(contours_text_rot[0]),'sjppo')
|
||||
##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0]
|
||||
##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1]
|
||||
cont_final.append(contours_text_rot[0])
|
||||
|
||||
##print(cont_final,'nadizzzz')
|
||||
return None, cont_final
|
||||
|
||||
def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind, add_boxes_coor_into_textlines=False):
|
||||
|
@ -1309,20 +1293,7 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
|
|||
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, kernel)
|
||||
textline_mask = cv2.erode(textline_mask, kernel, iterations=2)
|
||||
# textline_mask = cv2.erode(textline_mask, kernel, iterations=1)
|
||||
|
||||
# print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz')
|
||||
try:
|
||||
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
||||
# plt.imshow(textline_mask)
|
||||
# plt.show()
|
||||
|
||||
# if abs(slope)>1:
|
||||
# x_help=30
|
||||
# y_help=2
|
||||
# else:
|
||||
# x_help=2
|
||||
# y_help=2
|
||||
|
||||
x_help = 30
|
||||
y_help = 2
|
||||
|
||||
|
@ -1346,28 +1317,12 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
|
|||
img_contour = np.zeros((box_ind[3], box_ind[2], 3))
|
||||
img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255))
|
||||
|
||||
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
||||
# plt.imshow(img_contour)
|
||||
# plt.show()
|
||||
|
||||
img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help),
|
||||
img_contour.shape[1] + int(2 * x_help), 3))
|
||||
img_contour_help[y_help : y_help + img_contour.shape[0],
|
||||
x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
|
||||
|
||||
img_contour_rot = rotate_image(img_contour_help, slope)
|
||||
# plt.imshow(img_contour_rot_help)
|
||||
# plt.show()
|
||||
|
||||
# plt.imshow(dst_help)
|
||||
# plt.show()
|
||||
|
||||
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
||||
# plt.imshow(img_contour_rot_help)
|
||||
# plt.show()
|
||||
|
||||
# plt.imshow(dst_help)
|
||||
# plt.show()
|
||||
|
||||
img_contour_rot = img_contour_rot.astype(np.uint8)
|
||||
# dst_help = dst_help.astype(np.uint8)
|
||||
|
@ -1378,9 +1333,7 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
|
|||
len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))]
|
||||
ind_big_con = np.argmax(len_con_text_rot)
|
||||
|
||||
# print('juzaa')
|
||||
if abs(slope) > 45:
|
||||
# print(add_boxes_coor_into_textlines,'avval')
|
||||
_, contours_rotated_clean = separate_lines_vertical_cont(
|
||||
textline_mask, contours_text_rot[ind_big_con], box_ind, slope,
|
||||
add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
|
||||
|
@ -1412,7 +1365,6 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl
|
|||
length_x = int(img_path.shape[1] / float(num_patches))
|
||||
# margin = int(0.04 * length_x) just recently this was changed because it break lines into 2
|
||||
margin = int(0.04 * length_x)
|
||||
# print(margin,'margin')
|
||||
# if margin<=4:
|
||||
# margin = int(0.08 * length_x)
|
||||
# margin=0
|
||||
|
@ -1452,11 +1404,9 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl
|
|||
# if abs(slope_region)>70 and abs(slope_xline)<25:
|
||||
# slope_xline=[slope_region][0]
|
||||
slopes_tile_wise.append(slope_xline)
|
||||
# print(slope_xline,'xlineeee')
|
||||
img_line_rotated = rotate_image(img_xline, slope_xline)
|
||||
img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1
|
||||
|
||||
# print(slopes_tile_wise,'slopes_tile_wise')
|
||||
|
||||
img_patch_ineterst = img_path[:, :] # [peaks_neg_true[14]-dis_up:peaks_neg_true[14]+dis_down ,:]
|
||||
|
||||
img_patch_ineterst_revised = np.zeros(img_patch_ineterst.shape)
|
||||
|
@ -1498,8 +1448,6 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl
|
|||
img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin : length_x - margin]
|
||||
img_patch_ineterst_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_separated_returned_true_size
|
||||
|
||||
# plt.imshow(img_patch_ineterst_revised)
|
||||
# plt.show()
|
||||
return img_patch_ineterst_revised
|
||||
|
||||
def do_image_rotation(angle, img, sigma_des, logger=None):
|
||||
|
@ -1532,20 +1480,13 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
|
|||
#img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:]
|
||||
img_resized[ onset_y:onset_y+img_int.shape[0] , onset_x:onset_x+img_int.shape[1] ]=img_int[:,:]
|
||||
|
||||
#print(img_resized.shape,'img_resizedshape')
|
||||
#plt.imshow(img_resized)
|
||||
#plt.show()
|
||||
if main_page and img_patch_org.shape[1] > img_patch_org.shape[0]:
|
||||
#plt.imshow(img_resized)
|
||||
#plt.show()
|
||||
angles = np.array([-45, 0, 45, 90,])
|
||||
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
||||
|
||||
angles = np.linspace(angle - 22.5, angle + 22.5, n_tot_angles)
|
||||
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
||||
elif main_page:
|
||||
#plt.imshow(img_resized)
|
||||
#plt.show()
|
||||
angles = np.linspace(-12, 12, n_tot_angles)#np.array([0 , 45 , 90 , -45])
|
||||
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
||||
|
||||
|
@ -1632,22 +1573,12 @@ def do_work_of_slopes_new(
|
|||
if slope_for_all == MAX_SLOPE:
|
||||
slope_for_all = slope_deskew
|
||||
slope = slope_for_all
|
||||
|
||||
mask_only_con_region = np.zeros(textline_mask_tot_ea.shape)
|
||||
mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contour_par], color=(1, 1, 1))
|
||||
|
||||
# plt.imshow(mask_only_con_region)
|
||||
# plt.show()
|
||||
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w].copy()
|
||||
mask_only_con_region = mask_only_con_region[y: y + h, x: x + w]
|
||||
|
||||
##plt.imshow(textline_mask_tot_ea)
|
||||
##plt.show()
|
||||
##plt.imshow(all_text_region_raw)
|
||||
##plt.show()
|
||||
##plt.imshow(mask_only_con_region)
|
||||
##plt.show()
|
||||
|
||||
all_text_region_raw[mask_only_con_region == 0] = 0
|
||||
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text)
|
||||
|
||||
|
@ -1708,20 +1639,15 @@ def do_work_of_slopes_new_curved(
|
|||
mask_region_in_patch_region = mask_biggest[y : y + h, x : x + w]
|
||||
textline_biggest_region = mask_biggest * textline_mask_tot_ea
|
||||
|
||||
# print(slope_for_all,'slope_for_all')
|
||||
textline_rotated_separated = separate_lines_new2(textline_biggest_region[y: y+h, x: x+w], 0,
|
||||
num_col, slope_for_all,
|
||||
logger=logger, plotter=plotter)
|
||||
|
||||
# new line added
|
||||
##print(np.shape(textline_rotated_separated),np.shape(mask_biggest))
|
||||
|
||||
textline_rotated_separated[mask_region_in_patch_region[:, :] != 1] = 0
|
||||
# till here
|
||||
|
||||
textline_region_in_image[y : y + h, x : x + w] = textline_rotated_separated
|
||||
|
||||
# plt.imshow(textline_region_in_image)
|
||||
# plt.show()
|
||||
|
||||
pixel_img = 1
|
||||
cnt_textlines_in_image = return_contours_of_interested_textline(textline_region_in_image, pixel_img)
|
||||
|
@ -1744,7 +1670,6 @@ def do_work_of_slopes_new_curved(
|
|||
logger.error(why)
|
||||
else:
|
||||
textlines_cnt_per_region = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text, True)
|
||||
# print(np.shape(textlines_cnt_per_region),'textlines_cnt_per_region')
|
||||
|
||||
return textlines_cnt_per_region[::-1], box_text, contour, contour_par, crop_coor, index_r_con, slope
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue