mirror of
				https://github.com/qurator-spk/eynollah.git
				synced 2025-10-31 01:34:17 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1265 lines
		
	
	
	
		
			54 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1265 lines
		
	
	
	
		
			54 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
 | |
| def seperate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
 | |
| 
 | |
|     (h, w) = img_patch.shape[:2]
 | |
|     center = (w // 2, h // 2)
 | |
|     M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
 | |
|     x_d = M[0, 2]
 | |
|     y_d = M[1, 2]
 | |
| 
 | |
|     thetha = thetha / 180.0 * np.pi
 | |
|     rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
 | |
|     contour_text_interest_copy = contour_text_interest.copy()
 | |
| 
 | |
|     x_cont = contour_text_interest[:, 0, 0]
 | |
|     y_cont = contour_text_interest[:, 0, 1]
 | |
|     x_cont = x_cont - np.min(x_cont)
 | |
|     y_cont = y_cont - np.min(y_cont)
 | |
| 
 | |
|     x_min_cont = 0
 | |
|     x_max_cont = img_patch.shape[1]
 | |
|     y_min_cont = 0
 | |
|     y_max_cont = img_patch.shape[0]
 | |
| 
 | |
|     xv = np.linspace(x_min_cont, x_max_cont, 1000)
 | |
| 
 | |
|     textline_patch_sum_along_width = img_patch.sum(axis=1)
 | |
| 
 | |
|     first_nonzero = 0  # (next((i for i, x in enumerate(mada_n) if x), None))
 | |
| 
 | |
|     y = textline_patch_sum_along_width[:]  # [first_nonzero:last_nonzero]
 | |
|     y_padded = np.zeros(len(y) + 40)
 | |
|     y_padded[20 : len(y) + 20] = y
 | |
|     x = np.array(range(len(y)))
 | |
| 
 | |
|     peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
 | |
| 
 | |
|     if 1 > 0:
 | |
| 
 | |
|         try:
 | |
| 
 | |
|             y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
 | |
|             y_padded_up_to_down_e = -y_padded + np.max(y_padded)
 | |
|             y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
 | |
|             y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
 | |
|             y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
 | |
| 
 | |
|             peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
 | |
|             peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
 | |
|             neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
 | |
| 
 | |
|             arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
 | |
|             diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
 | |
| 
 | |
|             arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
 | |
|             arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
 | |
| 
 | |
|             peaks_new = peaks_e[:]
 | |
|             peaks_neg_new = peaks_neg_e[:]
 | |
| 
 | |
|             clusters_to_be_deleted = []
 | |
|             if len(arg_diff_cluster) > 0:
 | |
| 
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
 | |
|                 for i in range(len(arg_diff_cluster) - 1):
 | |
|                     clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
 | |
| 
 | |
|             if len(clusters_to_be_deleted) > 0:
 | |
|                 peaks_new_extra = []
 | |
|                 for m in range(len(clusters_to_be_deleted)):
 | |
|                     min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
 | |
|                     max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
 | |
|                     peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
 | |
|                     for m1 in range(len(clusters_to_be_deleted[m])):
 | |
|                         peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
 | |
|                         peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
 | |
| 
 | |
|                         peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
 | |
|                 peaks_new_tot = []
 | |
|                 for i1 in peaks_new:
 | |
|                     peaks_new_tot.append(i1)
 | |
|                 for i1 in peaks_new_extra:
 | |
|                     peaks_new_tot.append(i1)
 | |
|                 peaks_new_tot = np.sort(peaks_new_tot)
 | |
| 
 | |
|             else:
 | |
|                 peaks_new_tot = peaks_e[:]
 | |
| 
 | |
|             textline_con, hierachy = return_contours_of_image(img_patch)
 | |
|             textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
 | |
|             y_diff_mean = np.mean(np.diff(peaks_new_tot))  # self.find_contours_mean_y_diff(textline_con_fil)
 | |
| 
 | |
|             sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
 | |
|             # print(sigma_gaus,'sigma_gaus')
 | |
|         except:
 | |
|             sigma_gaus = 12
 | |
|         if sigma_gaus < 3:
 | |
|             sigma_gaus = 3
 | |
|         # print(sigma_gaus,'sigma')
 | |
| 
 | |
|     y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
 | |
|     y_padded_up_to_down = -y_padded + np.max(y_padded)
 | |
|     y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
 | |
|     y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
 | |
|     y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
 | |
| 
 | |
|     peaks, _ = find_peaks(y_padded_smoothed, height=0)
 | |
|     peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
 | |
| 
 | |
|     try:
 | |
|         neg_peaks_max = np.max(y_padded_smoothed[peaks])
 | |
| 
 | |
|         arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
 | |
| 
 | |
|         diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
 | |
| 
 | |
|         arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
 | |
|         arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
 | |
|     except:
 | |
|         arg_neg_must_be_deleted = []
 | |
|         arg_diff_cluster = []
 | |
| 
 | |
|     try:
 | |
|         peaks_new = peaks[:]
 | |
|         peaks_neg_new = peaks_neg[:]
 | |
|         clusters_to_be_deleted = []
 | |
| 
 | |
|         if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
 | |
| 
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
 | |
|             for i in range(len(arg_diff_cluster) - 1):
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
 | |
|         elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
 | |
| 
 | |
|         if len(arg_neg_must_be_deleted) == 1:
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted)
 | |
| 
 | |
|         if len(clusters_to_be_deleted) > 0:
 | |
|             peaks_new_extra = []
 | |
|             for m in range(len(clusters_to_be_deleted)):
 | |
|                 min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
 | |
|                 max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
 | |
|                 peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
 | |
|                 for m1 in range(len(clusters_to_be_deleted[m])):
 | |
|                     peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
 | |
|                     peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
 | |
| 
 | |
|                     peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
 | |
|             peaks_new_tot = []
 | |
|             for i1 in peaks_new:
 | |
|                 peaks_new_tot.append(i1)
 | |
|             for i1 in peaks_new_extra:
 | |
|                 peaks_new_tot.append(i1)
 | |
|             peaks_new_tot = np.sort(peaks_new_tot)
 | |
| 
 | |
|             ##plt.plot(y_padded_up_to_down_padded)
 | |
|             ##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
 | |
|             ##plt.show()
 | |
| 
 | |
|             ##plt.plot(y_padded_up_to_down_padded)
 | |
|             ##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
 | |
|             ##plt.show()
 | |
| 
 | |
|             ##plt.plot(y_padded_smoothed)
 | |
|             ##plt.plot(peaks,y_padded_smoothed[peaks],'*')
 | |
|             ##plt.show()
 | |
| 
 | |
|             ##plt.plot(y_padded_smoothed)
 | |
|             ##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
 | |
|             ##plt.show()
 | |
| 
 | |
|             peaks = peaks_new_tot[:]
 | |
|             peaks_neg = peaks_neg_new[:]
 | |
| 
 | |
|         else:
 | |
|             peaks_new_tot = peaks[:]
 | |
|             peaks = peaks_new_tot[:]
 | |
|             peaks_neg = peaks_neg_new[:]
 | |
|     except:
 | |
|         pass
 | |
| 
 | |
|     mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
 | |
|     std_value_of_peaks = np.std(y_padded_smoothed[peaks])
 | |
|     peaks_values = y_padded_smoothed[peaks]
 | |
| 
 | |
|     peaks_neg = peaks_neg - 20 - 20
 | |
|     peaks = peaks - 20
 | |
| 
 | |
|     for jj in range(len(peaks_neg)):
 | |
|         if peaks_neg[jj] > len(x) - 1:
 | |
|             peaks_neg[jj] = len(x) - 1
 | |
| 
 | |
|     for jj in range(len(peaks)):
 | |
|         if peaks[jj] > len(x) - 1:
 | |
|             peaks[jj] = len(x) - 1
 | |
| 
 | |
|     textline_boxes = []
 | |
|     textline_boxes_rot = []
 | |
| 
 | |
|     if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
 | |
|         for jj in range(len(peaks)):
 | |
| 
 | |
|             if jj == (len(peaks) - 1):
 | |
|                 dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
 | |
|                 dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
 | |
| 
 | |
|                 if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = y_max_cont - 1  ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
|                 else:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = y_max_cont - 1  ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
| 
 | |
|                 point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down)  ###-int(dis_to_next_down*1./2)
 | |
|             else:
 | |
|                 dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
 | |
|                 dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
 | |
| 
 | |
|                 if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
|                 else:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
| 
 | |
|                 point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down)  ###-int(dis_to_next_down*1./2)
 | |
| 
 | |
|             if point_down_narrow >= img_patch.shape[0]:
 | |
|                 point_down_narrow = img_patch.shape[0] - 2
 | |
| 
 | |
|             distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
 | |
|             distances = np.array(distances)
 | |
| 
 | |
|             xvinside = xv[distances >= 0]
 | |
| 
 | |
|             if len(xvinside) == 0:
 | |
|                 x_min = x_min_cont
 | |
|                 x_max = x_max_cont
 | |
|             else:
 | |
|                 x_min = np.min(xvinside)  # max(x_min_interest,x_min_cont)
 | |
|                 x_max = np.max(xvinside)  # min(x_max_interest,x_max_cont)
 | |
| 
 | |
|             p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
 | |
|             p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
 | |
|             p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
 | |
|             p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
 | |
| 
 | |
|             x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|             x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|             x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|             x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|             if x_min_rot1 < 0:
 | |
|                 x_min_rot1 = 0
 | |
|             if x_min_rot4 < 0:
 | |
|                 x_min_rot4 = 0
 | |
|             if point_up_rot1 < 0:
 | |
|                 point_up_rot1 = 0
 | |
|             if point_up_rot2 < 0:
 | |
|                 point_up_rot2 = 0
 | |
| 
 | |
|             x_min_rot1 = x_min_rot1 - x_help
 | |
|             x_max_rot2 = x_max_rot2 - x_help
 | |
|             x_max_rot3 = x_max_rot3 - x_help
 | |
|             x_min_rot4 = x_min_rot4 - x_help
 | |
| 
 | |
|             point_up_rot1 = point_up_rot1 - y_help
 | |
|             point_up_rot2 = point_up_rot2 - y_help
 | |
|             point_down_rot3 = point_down_rot3 - y_help
 | |
|             point_down_rot4 = point_down_rot4 - y_help
 | |
| 
 | |
|             textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|             textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
 | |
| 
 | |
|     elif len(peaks) < 1:
 | |
|         pass
 | |
| 
 | |
|     elif len(peaks) == 1:
 | |
| 
 | |
|         distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[0] + first_nonzero), True) for mj in range(len(xv))]
 | |
|         distances = np.array(distances)
 | |
| 
 | |
|         xvinside = xv[distances >= 0]
 | |
| 
 | |
|         if len(xvinside) == 0:
 | |
|             x_min = x_min_cont
 | |
|             x_max = x_max_cont
 | |
|         else:
 | |
|             x_min = np.min(xvinside)  # max(x_min_interest,x_min_cont)
 | |
|             x_max = np.max(xvinside)  # min(x_max_interest,x_max_cont)
 | |
|         # x_min = x_min_cont
 | |
|         # x_max = x_max_cont
 | |
| 
 | |
|         y_min = y_min_cont
 | |
|         y_max = y_max_cont
 | |
| 
 | |
|         p1 = np.dot(rotation_matrix, [int(x_min), int(y_min)])
 | |
|         p2 = np.dot(rotation_matrix, [int(x_max), int(y_min)])
 | |
|         p3 = np.dot(rotation_matrix, [int(x_max), int(y_max)])
 | |
|         p4 = np.dot(rotation_matrix, [int(x_min), int(y_max)])
 | |
| 
 | |
|         x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|         x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|         x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|         x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|         if x_min_rot1 < 0:
 | |
|             x_min_rot1 = 0
 | |
|         if x_min_rot4 < 0:
 | |
|             x_min_rot4 = 0
 | |
|         if point_up_rot1 < 0:
 | |
|             point_up_rot1 = 0
 | |
|         if point_up_rot2 < 0:
 | |
|             point_up_rot2 = 0
 | |
| 
 | |
|         x_min_rot1 = x_min_rot1 - x_help
 | |
|         x_max_rot2 = x_max_rot2 - x_help
 | |
|         x_max_rot3 = x_max_rot3 - x_help
 | |
|         x_min_rot4 = x_min_rot4 - x_help
 | |
| 
 | |
|         point_up_rot1 = point_up_rot1 - y_help
 | |
|         point_up_rot2 = point_up_rot2 - y_help
 | |
|         point_down_rot3 = point_down_rot3 - y_help
 | |
|         point_down_rot4 = point_down_rot4 - y_help
 | |
| 
 | |
|         textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|         textline_boxes.append(np.array([[int(x_min), int(y_min)], [int(x_max), int(y_min)], [int(x_max), int(y_max)], [int(x_min), int(y_max)]]))
 | |
| 
 | |
|     elif len(peaks) == 2:
 | |
|         dis_to_next = np.abs(peaks[1] - peaks[0])
 | |
|         for jj in range(len(peaks)):
 | |
|             if jj == 0:
 | |
|                 point_up = 0  # peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
 | |
|                 if point_up < 0:
 | |
|                     point_up = 1
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
 | |
|             elif jj == 1:
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
 | |
|                 if point_down >= img_patch.shape[0]:
 | |
|                     point_down = img_patch.shape[0] - 2
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next)
 | |
| 
 | |
|             distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
 | |
|             distances = np.array(distances)
 | |
| 
 | |
|             xvinside = xv[distances >= 0]
 | |
| 
 | |
|             if len(xvinside) == 0:
 | |
|                 x_min = x_min_cont
 | |
|                 x_max = x_max_cont
 | |
|             else:
 | |
|                 x_min = np.min(xvinside)
 | |
|                 x_max = np.max(xvinside)
 | |
| 
 | |
|             p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
 | |
|             p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
 | |
|             p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
 | |
|             p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
 | |
| 
 | |
|             x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|             x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|             x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|             x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|             if x_min_rot1 < 0:
 | |
|                 x_min_rot1 = 0
 | |
|             if x_min_rot4 < 0:
 | |
|                 x_min_rot4 = 0
 | |
|             if point_up_rot1 < 0:
 | |
|                 point_up_rot1 = 0
 | |
|             if point_up_rot2 < 0:
 | |
|                 point_up_rot2 = 0
 | |
| 
 | |
|             x_min_rot1 = x_min_rot1 - x_help
 | |
|             x_max_rot2 = x_max_rot2 - x_help
 | |
|             x_max_rot3 = x_max_rot3 - x_help
 | |
|             x_min_rot4 = x_min_rot4 - x_help
 | |
| 
 | |
|             point_up_rot1 = point_up_rot1 - y_help
 | |
|             point_up_rot2 = point_up_rot2 - y_help
 | |
|             point_down_rot3 = point_down_rot3 - y_help
 | |
|             point_down_rot4 = point_down_rot4 - y_help
 | |
| 
 | |
|             textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|             textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
 | |
|     else:
 | |
|         for jj in range(len(peaks)):
 | |
| 
 | |
|             if jj == 0:
 | |
|                 dis_to_next = peaks[jj + 1] - peaks[jj]
 | |
|                 # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
 | |
|                 if point_up < 0:
 | |
|                     point_up = 1
 | |
|                 # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next)
 | |
|             elif jj == len(peaks) - 1:
 | |
|                 dis_to_next = peaks[jj] - peaks[jj - 1]
 | |
|                 # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.7 * dis_to_next)
 | |
|                 if point_down >= img_patch.shape[0]:
 | |
|                     point_down = img_patch.shape[0] - 2
 | |
|                 # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
 | |
|             else:
 | |
|                 dis_to_next_down = peaks[jj + 1] - peaks[jj]
 | |
|                 dis_to_next_up = peaks[jj] - peaks[jj - 1]
 | |
| 
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up)
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down)
 | |
| 
 | |
|             distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
 | |
|             distances = np.array(distances)
 | |
| 
 | |
|             xvinside = xv[distances >= 0]
 | |
| 
 | |
|             if len(xvinside) == 0:
 | |
|                 x_min = x_min_cont
 | |
|                 x_max = x_max_cont
 | |
|             else:
 | |
|                 x_min = np.min(xvinside)  # max(x_min_interest,x_min_cont)
 | |
|                 x_max = np.max(xvinside)  # min(x_max_interest,x_max_cont)
 | |
| 
 | |
|             p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
 | |
|             p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
 | |
|             p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
 | |
|             p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
 | |
| 
 | |
|             x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|             x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|             x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|             x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|             if x_min_rot1 < 0:
 | |
|                 x_min_rot1 = 0
 | |
|             if x_min_rot4 < 0:
 | |
|                 x_min_rot4 = 0
 | |
|             if point_up_rot1 < 0:
 | |
|                 point_up_rot1 = 0
 | |
|             if point_up_rot2 < 0:
 | |
|                 point_up_rot2 = 0
 | |
| 
 | |
|             x_min_rot1 = x_min_rot1 - x_help
 | |
|             x_max_rot2 = x_max_rot2 - x_help
 | |
|             x_max_rot3 = x_max_rot3 - x_help
 | |
|             x_min_rot4 = x_min_rot4 - x_help
 | |
| 
 | |
|             point_up_rot1 = point_up_rot1 - y_help
 | |
|             point_up_rot2 = point_up_rot2 - y_help
 | |
|             point_down_rot3 = point_down_rot3 - y_help
 | |
|             point_down_rot4 = point_down_rot4 - y_help
 | |
| 
 | |
|             textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|             textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
 | |
| 
 | |
|     return peaks, textline_boxes_rot
 | |
| 
 | |
| def seperate_lines_vertical(img_patch, contour_text_interest, thetha):
 | |
| 
 | |
|     thetha = thetha + 90
 | |
| 
 | |
|     (h, w) = img_patch.shape[:2]
 | |
|     center = (w // 2, h // 2)
 | |
|     M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
 | |
|     x_d = M[0, 2]
 | |
|     y_d = M[1, 2]
 | |
| 
 | |
|     thetha = thetha / 180.0 * np.pi
 | |
|     rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
 | |
|     contour_text_interest_copy = contour_text_interest.copy()
 | |
| 
 | |
|     x_cont = contour_text_interest[:, 0, 0]
 | |
|     y_cont = contour_text_interest[:, 0, 1]
 | |
|     x_cont = x_cont - np.min(x_cont)
 | |
|     y_cont = y_cont - np.min(y_cont)
 | |
| 
 | |
|     x_min_cont = 0
 | |
|     x_max_cont = img_patch.shape[1]
 | |
|     y_min_cont = 0
 | |
|     y_max_cont = img_patch.shape[0]
 | |
| 
 | |
|     xv = np.linspace(x_min_cont, x_max_cont, 1000)
 | |
| 
 | |
|     textline_patch_sum_along_width = img_patch.sum(axis=0)
 | |
| 
 | |
|     first_nonzero = 0  # (next((i for i, x in enumerate(mada_n) if x), None))
 | |
| 
 | |
|     y = textline_patch_sum_along_width[:]  # [first_nonzero:last_nonzero]
 | |
|     y_padded = np.zeros(len(y) + 40)
 | |
|     y_padded[20 : len(y) + 20] = y
 | |
|     x = np.array(range(len(y)))
 | |
| 
 | |
|     peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
 | |
|     if 1 > 0:
 | |
| 
 | |
|         try:
 | |
| 
 | |
|             y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
 | |
|             y_padded_up_to_down_e = -y_padded + np.max(y_padded)
 | |
|             y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
 | |
|             y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
 | |
|             y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
 | |
| 
 | |
|             peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
 | |
|             peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
 | |
|             neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
 | |
| 
 | |
|             arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
 | |
|             diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
 | |
| 
 | |
|             arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
 | |
|             arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
 | |
| 
 | |
|             peaks_new = peaks_e[:]
 | |
|             peaks_neg_new = peaks_neg_e[:]
 | |
| 
 | |
|             clusters_to_be_deleted = []
 | |
|             if len(arg_diff_cluster) > 0:
 | |
| 
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
 | |
|                 for i in range(len(arg_diff_cluster) - 1):
 | |
|                     clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
 | |
| 
 | |
|             if len(clusters_to_be_deleted) > 0:
 | |
|                 peaks_new_extra = []
 | |
|                 for m in range(len(clusters_to_be_deleted)):
 | |
|                     min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
 | |
|                     max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
 | |
|                     peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
 | |
|                     for m1 in range(len(clusters_to_be_deleted[m])):
 | |
|                         peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
 | |
|                         peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
 | |
| 
 | |
|                         peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
 | |
|                 peaks_new_tot = []
 | |
|                 for i1 in peaks_new:
 | |
|                     peaks_new_tot.append(i1)
 | |
|                 for i1 in peaks_new_extra:
 | |
|                     peaks_new_tot.append(i1)
 | |
|                 peaks_new_tot = np.sort(peaks_new_tot)
 | |
| 
 | |
|             else:
 | |
|                 peaks_new_tot = peaks_e[:]
 | |
| 
 | |
|             textline_con, hierachy = return_contours_of_image(img_patch)
 | |
|             textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
 | |
|             y_diff_mean = np.mean(np.diff(peaks_new_tot))  # self.find_contours_mean_y_diff(textline_con_fil)
 | |
| 
 | |
|             sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
 | |
|             # print(sigma_gaus,'sigma_gaus')
 | |
|         except:
 | |
|             sigma_gaus = 12
 | |
|         if sigma_gaus < 3:
 | |
|             sigma_gaus = 3
 | |
|         # print(sigma_gaus,'sigma')
 | |
| 
 | |
|     y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
 | |
|     y_padded_up_to_down = -y_padded + np.max(y_padded)
 | |
|     y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
 | |
|     y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
 | |
|     y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
 | |
| 
 | |
|     peaks, _ = find_peaks(y_padded_smoothed, height=0)
 | |
|     peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
 | |
| 
 | |
|     # plt.plot(y_padded_up_to_down_padded)
 | |
|     # plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
 | |
|     # plt.title('negs')
 | |
|     # plt.show()
 | |
| 
 | |
|     # plt.plot(y_padded_smoothed)
 | |
|     # plt.plot(peaks,y_padded_smoothed[peaks],'*')
 | |
|     # plt.title('poss')
 | |
|     # plt.show()
 | |
| 
 | |
|     neg_peaks_max = np.max(y_padded_up_to_down_padded[peaks_neg])
 | |
| 
 | |
|     arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
 | |
| 
 | |
|     diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
 | |
| 
 | |
|     arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
 | |
|     arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
 | |
| 
 | |
|     peaks_new = peaks[:]
 | |
|     peaks_neg_new = peaks_neg[:]
 | |
|     clusters_to_be_deleted = []
 | |
| 
 | |
|     if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
 | |
| 
 | |
|         clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
 | |
|         for i in range(len(arg_diff_cluster) - 1):
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
 | |
|         clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
 | |
|     elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
 | |
|         clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
 | |
| 
 | |
|     if len(arg_neg_must_be_deleted) == 1:
 | |
|         clusters_to_be_deleted.append(arg_neg_must_be_deleted)
 | |
| 
 | |
|     if len(clusters_to_be_deleted) > 0:
 | |
|         peaks_new_extra = []
 | |
|         for m in range(len(clusters_to_be_deleted)):
 | |
|             min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
 | |
|             max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
 | |
|             peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
 | |
|             for m1 in range(len(clusters_to_be_deleted[m])):
 | |
|                 peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
 | |
|                 peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
 | |
| 
 | |
|                 peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
 | |
|         peaks_new_tot = []
 | |
|         for i1 in peaks_new:
 | |
|             peaks_new_tot.append(i1)
 | |
|         for i1 in peaks_new_extra:
 | |
|             peaks_new_tot.append(i1)
 | |
|         peaks_new_tot = np.sort(peaks_new_tot)
 | |
| 
 | |
|         peaks = peaks_new_tot[:]
 | |
|         peaks_neg = peaks_neg_new[:]
 | |
| 
 | |
|     else:
 | |
|         peaks_new_tot = peaks[:]
 | |
|         peaks = peaks_new_tot[:]
 | |
|         peaks_neg = peaks_neg_new[:]
 | |
| 
 | |
|     mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
 | |
|     std_value_of_peaks = np.std(y_padded_smoothed[peaks])
 | |
|     peaks_values = y_padded_smoothed[peaks]
 | |
| 
 | |
|     peaks_neg = peaks_neg - 20 - 20
 | |
|     peaks = peaks - 20
 | |
| 
 | |
|     for jj in range(len(peaks_neg)):
 | |
|         if peaks_neg[jj] > len(x) - 1:
 | |
|             peaks_neg[jj] = len(x) - 1
 | |
| 
 | |
|     for jj in range(len(peaks)):
 | |
|         if peaks[jj] > len(x) - 1:
 | |
|             peaks[jj] = len(x) - 1
 | |
| 
 | |
|     textline_boxes = []
 | |
|     textline_boxes_rot = []
 | |
| 
 | |
|     if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
 | |
|         # print('11')
 | |
|         for jj in range(len(peaks)):
 | |
| 
 | |
|             if jj == (len(peaks) - 1):
 | |
|                 dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
 | |
|                 dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
 | |
| 
 | |
|                 if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = x_max_cont - 1  ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
|                 else:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = x_max_cont - 1  ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
| 
 | |
|                 point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down)  ###-int(dis_to_next_down*1./2)
 | |
|             else:
 | |
|                 dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
 | |
|                 dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
 | |
| 
 | |
|                 if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
|                 else:
 | |
|                     point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up)  ##+int(dis_to_next_up*1./4.0)
 | |
|                     point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down)  ###-int(dis_to_next_down*1./4.0)
 | |
| 
 | |
|                 point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down)  ###-int(dis_to_next_down*1./2)
 | |
| 
 | |
|             if point_down_narrow >= img_patch.shape[0]:
 | |
|                 point_down_narrow = img_patch.shape[0] - 2
 | |
| 
 | |
|             distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
 | |
|             distances = np.array(distances)
 | |
| 
 | |
|             xvinside = xv[distances >= 0]
 | |
| 
 | |
|             if len(xvinside) == 0:
 | |
|                 x_min = x_min_cont
 | |
|                 x_max = x_max_cont
 | |
|             else:
 | |
|                 x_min = np.min(xvinside)  # max(x_min_interest,x_min_cont)
 | |
|                 x_max = np.max(xvinside)  # min(x_max_interest,x_max_cont)
 | |
| 
 | |
|             p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
 | |
|             p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
 | |
|             p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
 | |
|             p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
 | |
| 
 | |
|             x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|             x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|             x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|             x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|             if x_min_rot1 < 0:
 | |
|                 x_min_rot1 = 0
 | |
|             if x_min_rot4 < 0:
 | |
|                 x_min_rot4 = 0
 | |
|             if point_up_rot1 < 0:
 | |
|                 point_up_rot1 = 0
 | |
|             if point_up_rot2 < 0:
 | |
|                 point_up_rot2 = 0
 | |
| 
 | |
|             textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|             textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
 | |
| 
 | |
|     elif len(peaks) < 1:
 | |
|         pass
 | |
| 
 | |
|     elif len(peaks) == 1:
 | |
|         x_min = x_min_cont
 | |
|         x_max = x_max_cont
 | |
| 
 | |
|         y_min = y_min_cont
 | |
|         y_max = y_max_cont
 | |
| 
 | |
|         p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
 | |
|         p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
 | |
|         p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
 | |
|         p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
 | |
| 
 | |
|         x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|         x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|         x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|         x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|         if x_min_rot1 < 0:
 | |
|             x_min_rot1 = 0
 | |
|         if x_min_rot4 < 0:
 | |
|             x_min_rot4 = 0
 | |
|         if point_up_rot1 < 0:
 | |
|             point_up_rot1 = 0
 | |
|         if point_up_rot2 < 0:
 | |
|             point_up_rot2 = 0
 | |
| 
 | |
|         textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|         textline_boxes.append(np.array([[int(x_min), int(y_min)], [int(x_max), int(y_min)], [int(x_max), int(y_max)], [int(x_min), int(y_max)]]))
 | |
| 
 | |
|     elif len(peaks) == 2:
 | |
|         dis_to_next = np.abs(peaks[1] - peaks[0])
 | |
|         for jj in range(len(peaks)):
 | |
|             if jj == 0:
 | |
|                 point_up = 0  # peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
 | |
|                 if point_up < 0:
 | |
|                     point_up = 1
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
 | |
|             elif jj == 1:
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
 | |
|                 if point_down >= img_patch.shape[0]:
 | |
|                     point_down = img_patch.shape[0] - 2
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next)
 | |
| 
 | |
|             distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
 | |
|             distances = np.array(distances)
 | |
| 
 | |
|             xvinside = xv[distances >= 0]
 | |
| 
 | |
|             if len(xvinside) == 0:
 | |
|                 x_min = x_min_cont
 | |
|                 x_max = x_max_cont
 | |
|             else:
 | |
|                 x_min = np.min(xvinside)
 | |
|                 x_max = np.max(xvinside)
 | |
| 
 | |
|             p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
 | |
|             p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
 | |
|             p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
 | |
|             p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
 | |
| 
 | |
|             x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|             x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|             x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|             x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|             if x_min_rot1 < 0:
 | |
|                 x_min_rot1 = 0
 | |
|             if x_min_rot4 < 0:
 | |
|                 x_min_rot4 = 0
 | |
|             if point_up_rot1 < 0:
 | |
|                 point_up_rot1 = 0
 | |
|             if point_up_rot2 < 0:
 | |
|                 point_up_rot2 = 0
 | |
| 
 | |
|             textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|             textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
 | |
|     else:
 | |
|         for jj in range(len(peaks)):
 | |
| 
 | |
|             if jj == 0:
 | |
|                 dis_to_next = peaks[jj + 1] - peaks[jj]
 | |
|                 # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
 | |
|                 if point_up < 0:
 | |
|                     point_up = 1
 | |
|                 # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next)
 | |
|             elif jj == len(peaks) - 1:
 | |
|                 dis_to_next = peaks[jj] - peaks[jj - 1]
 | |
|                 # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.7 * dis_to_next)
 | |
|                 if point_down >= img_patch.shape[0]:
 | |
|                     point_down = img_patch.shape[0] - 2
 | |
|                 # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
 | |
|             else:
 | |
|                 dis_to_next_down = peaks[jj + 1] - peaks[jj]
 | |
|                 dis_to_next_up = peaks[jj] - peaks[jj - 1]
 | |
| 
 | |
|                 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up)
 | |
|                 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down)
 | |
| 
 | |
|             distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
 | |
|             distances = np.array(distances)
 | |
| 
 | |
|             xvinside = xv[distances >= 0]
 | |
| 
 | |
|             if len(xvinside) == 0:
 | |
|                 x_min = x_min_cont
 | |
|                 x_max = x_max_cont
 | |
|             else:
 | |
|                 x_min = np.min(xvinside)  # max(x_min_interest,x_min_cont)
 | |
|                 x_max = np.max(xvinside)  # min(x_max_interest,x_max_cont)
 | |
| 
 | |
|             p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
 | |
|             p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
 | |
|             p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
 | |
|             p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
 | |
| 
 | |
|             x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
 | |
|             x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
 | |
|             x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
 | |
|             x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
 | |
| 
 | |
|             if x_min_rot1 < 0:
 | |
|                 x_min_rot1 = 0
 | |
|             if x_min_rot4 < 0:
 | |
|                 x_min_rot4 = 0
 | |
|             if point_up_rot1 < 0:
 | |
|                 point_up_rot1 = 0
 | |
|             if point_up_rot2 < 0:
 | |
|                 point_up_rot2 = 0
 | |
| 
 | |
|             textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
 | |
| 
 | |
|             textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
 | |
| 
 | |
|     return peaks, textline_boxes_rot
 | |
| 
 | |
| def seperate_lines_new_inside_teils2(img_patch, thetha):
 | |
| 
 | |
|     (h, w) = img_patch.shape[:2]
 | |
|     center = (w // 2, h // 2)
 | |
|     M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
 | |
|     x_d = M[0, 2]
 | |
|     y_d = M[1, 2]
 | |
| 
 | |
|     thetha = thetha / 180.0 * np.pi
 | |
|     rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
 | |
|     # contour_text_interest_copy = contour_text_interest.copy()
 | |
| 
 | |
|     # x_cont = contour_text_interest[:, 0, 0]
 | |
|     # y_cont = contour_text_interest[:, 0, 1]
 | |
|     # x_cont = x_cont - np.min(x_cont)
 | |
|     # y_cont = y_cont - np.min(y_cont)
 | |
| 
 | |
|     x_min_cont = 0
 | |
|     x_max_cont = img_patch.shape[1]
 | |
|     y_min_cont = 0
 | |
|     y_max_cont = img_patch.shape[0]
 | |
| 
 | |
|     xv = np.linspace(x_min_cont, x_max_cont, 1000)
 | |
| 
 | |
|     textline_patch_sum_along_width = img_patch.sum(axis=1)
 | |
| 
 | |
|     first_nonzero = 0  # (next((i for i, x in enumerate(mada_n) if x), None))
 | |
| 
 | |
|     y = textline_patch_sum_along_width[:]  # [first_nonzero:last_nonzero]
 | |
|     y_padded = np.zeros(len(y) + 40)
 | |
|     y_padded[20 : len(y) + 20] = y
 | |
|     x = np.array(range(len(y)))
 | |
| 
 | |
|     peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
 | |
|     if 1 > 0:
 | |
| 
 | |
|         try:
 | |
| 
 | |
|             y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
 | |
|             y_padded_up_to_down_e = -y_padded + np.max(y_padded)
 | |
|             y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
 | |
|             y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
 | |
|             y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
 | |
| 
 | |
|             peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
 | |
|             peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
 | |
|             neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
 | |
| 
 | |
|             arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
 | |
|             diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
 | |
| 
 | |
|             arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
 | |
|             arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
 | |
| 
 | |
|             peaks_new = peaks_e[:]
 | |
|             peaks_neg_new = peaks_neg_e[:]
 | |
| 
 | |
|             clusters_to_be_deleted = []
 | |
|             if len(arg_diff_cluster) > 0:
 | |
| 
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
 | |
|                 for i in range(len(arg_diff_cluster) - 1):
 | |
|                     clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
 | |
| 
 | |
|             if len(clusters_to_be_deleted) > 0:
 | |
|                 peaks_new_extra = []
 | |
|                 for m in range(len(clusters_to_be_deleted)):
 | |
|                     min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
 | |
|                     max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
 | |
|                     peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
 | |
|                     for m1 in range(len(clusters_to_be_deleted[m])):
 | |
|                         peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
 | |
|                         peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
 | |
| 
 | |
|                         peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
 | |
|                 peaks_new_tot = []
 | |
|                 for i1 in peaks_new:
 | |
|                     peaks_new_tot.append(i1)
 | |
|                 for i1 in peaks_new_extra:
 | |
|                     peaks_new_tot.append(i1)
 | |
|                 peaks_new_tot = np.sort(peaks_new_tot)
 | |
| 
 | |
|             else:
 | |
|                 peaks_new_tot = peaks_e[:]
 | |
| 
 | |
|             textline_con, hierachy = return_contours_of_image(img_patch)
 | |
|             textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
 | |
|             y_diff_mean = np.mean(np.diff(peaks_new_tot))  # self.find_contours_mean_y_diff(textline_con_fil)
 | |
| 
 | |
|             sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
 | |
|             # print(sigma_gaus,'sigma_gaus')
 | |
|         except:
 | |
|             sigma_gaus = 12
 | |
|         if sigma_gaus < 3:
 | |
|             sigma_gaus = 3
 | |
|         # print(sigma_gaus,'sigma')
 | |
| 
 | |
|     y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
 | |
|     y_padded_up_to_down = -y_padded + np.max(y_padded)
 | |
|     y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
 | |
|     y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
 | |
|     y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
 | |
| 
 | |
|     peaks, _ = find_peaks(y_padded_smoothed, height=0)
 | |
|     peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
 | |
| 
 | |
|     peaks_new = peaks[:]
 | |
|     peaks_neg_new = peaks_neg[:]
 | |
| 
 | |
|     try:
 | |
|         neg_peaks_max = np.max(y_padded_smoothed[peaks])
 | |
| 
 | |
|         arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.24]
 | |
| 
 | |
|         diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
 | |
| 
 | |
|         arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
 | |
|         arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
 | |
| 
 | |
|         clusters_to_be_deleted = []
 | |
| 
 | |
|         if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
 | |
| 
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
 | |
|             for i in range(len(arg_diff_cluster) - 1):
 | |
|                 clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
 | |
|         elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
 | |
| 
 | |
|         if len(arg_neg_must_be_deleted) == 1:
 | |
|             clusters_to_be_deleted.append(arg_neg_must_be_deleted)
 | |
| 
 | |
|         if len(clusters_to_be_deleted) > 0:
 | |
|             peaks_new_extra = []
 | |
|             for m in range(len(clusters_to_be_deleted)):
 | |
|                 min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
 | |
|                 max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
 | |
|                 peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
 | |
|                 for m1 in range(len(clusters_to_be_deleted[m])):
 | |
|                     peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
 | |
|                     peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
 | |
| 
 | |
|                     peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
 | |
|             peaks_new_tot = []
 | |
|             for i1 in peaks_new:
 | |
|                 peaks_new_tot.append(i1)
 | |
|             for i1 in peaks_new_extra:
 | |
|                 peaks_new_tot.append(i1)
 | |
|             peaks_new_tot = np.sort(peaks_new_tot)
 | |
| 
 | |
|             # plt.plot(y_padded_up_to_down_padded)
 | |
|             # plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
 | |
|             # plt.show()
 | |
| 
 | |
|             # plt.plot(y_padded_up_to_down_padded)
 | |
|             # plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
 | |
|             # plt.show()
 | |
| 
 | |
|             # plt.plot(y_padded_smoothed)
 | |
|             # plt.plot(peaks,y_padded_smoothed[peaks],'*')
 | |
|             # plt.show()
 | |
| 
 | |
|             # plt.plot(y_padded_smoothed)
 | |
|             # plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
 | |
|             # plt.show()
 | |
| 
 | |
|             peaks = peaks_new_tot[:]
 | |
|             peaks_neg = peaks_neg_new[:]
 | |
|     except:
 | |
|         pass
 | |
| 
 | |
|     else:
 | |
|         peaks_new_tot = peaks[:]
 | |
|         peaks = peaks_new_tot[:]
 | |
|         peaks_neg = peaks_neg_new[:]
 | |
| 
 | |
|     mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
 | |
|     std_value_of_peaks = np.std(y_padded_smoothed[peaks])
 | |
|     peaks_values = y_padded_smoothed[peaks]
 | |
| 
 | |
|     ###peaks_neg = peaks_neg - 20 - 20
 | |
|     ###peaks = peaks - 20
 | |
|     peaks_neg_true = peaks_neg[:]
 | |
|     peaks_pos_true = peaks[:]
 | |
| 
 | |
|     if len(peaks_neg_true) > 0:
 | |
|         peaks_neg_true = np.array(peaks_neg_true)
 | |
| 
 | |
|         peaks_neg_true = peaks_neg_true - 20 - 20
 | |
| 
 | |
|         # print(peaks_neg_true)
 | |
|         for i in range(len(peaks_neg_true)):
 | |
|             img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
 | |
| 
 | |
|     else:
 | |
|         pass
 | |
| 
 | |
|     if len(peaks_pos_true) > 0:
 | |
|         peaks_pos_true = np.array(peaks_pos_true)
 | |
|         peaks_pos_true = peaks_pos_true - 20
 | |
| 
 | |
|         for i in range(len(peaks_pos_true)):
 | |
|             ##img_patch[peaks_pos_true[i]-8:peaks_pos_true[i]+8,:]=1
 | |
|             img_patch[peaks_pos_true[i] - 6 : peaks_pos_true[i] + 6, :] = 1
 | |
|     else:
 | |
|         pass
 | |
|     kernel = np.ones((5, 5), np.uint8)
 | |
| 
 | |
|     # img_patch = cv2.erode(img_patch,kernel,iterations = 3)
 | |
|     #######################img_patch = cv2.erode(img_patch,kernel,iterations = 2)
 | |
|     img_patch = cv2.erode(img_patch, kernel, iterations=1)
 | |
|     return img_patch
 | |
| 
 | |
| def seperate_lines_new_inside_teils(img_path, thetha):
 | |
|     (h, w) = img_path.shape[:2]
 | |
|     center = (w // 2, h // 2)
 | |
|     M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
 | |
|     x_d = M[0, 2]
 | |
|     y_d = M[1, 2]
 | |
| 
 | |
|     thetha = thetha / 180.0 * np.pi
 | |
|     rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
 | |
| 
 | |
|     x_min_cont = 0
 | |
|     x_max_cont = img_path.shape[1]
 | |
|     y_min_cont = 0
 | |
|     y_max_cont = img_path.shape[0]
 | |
| 
 | |
|     xv = np.linspace(x_min_cont, x_max_cont, 1000)
 | |
| 
 | |
|     mada_n = img_path.sum(axis=1)
 | |
| 
 | |
|     ##plt.plot(mada_n)
 | |
|     ##plt.show()
 | |
| 
 | |
|     first_nonzero = 0  # (next((i for i, x in enumerate(mada_n) if x), None))
 | |
| 
 | |
|     y = mada_n[:]  # [first_nonzero:last_nonzero]
 | |
|     y_help = np.zeros(len(y) + 40)
 | |
|     y_help[20 : len(y) + 20] = y
 | |
|     x = np.array(range(len(y)))
 | |
| 
 | |
|     peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
 | |
|     if len(peaks_real) <= 2 and len(peaks_real) > 1:
 | |
|         sigma_gaus = 10
 | |
|     else:
 | |
|         sigma_gaus = 5
 | |
| 
 | |
|     z = gaussian_filter1d(y_help, sigma_gaus)
 | |
|     zneg_rev = -y_help + np.max(y_help)
 | |
|     zneg = np.zeros(len(zneg_rev) + 40)
 | |
|     zneg[20 : len(zneg_rev) + 20] = zneg_rev
 | |
|     zneg = gaussian_filter1d(zneg, sigma_gaus)
 | |
| 
 | |
|     peaks, _ = find_peaks(z, height=0)
 | |
|     peaks_neg, _ = find_peaks(zneg, height=0)
 | |
| 
 | |
|     for nn in range(len(peaks_neg)):
 | |
|         if peaks_neg[nn] > len(z) - 1:
 | |
|             peaks_neg[nn] = len(z) - 1
 | |
|         if peaks_neg[nn] < 0:
 | |
|             peaks_neg[nn] = 0
 | |
| 
 | |
|     diff_peaks = np.abs(np.diff(peaks_neg))
 | |
| 
 | |
|     cut_off = 20
 | |
|     peaks_neg_true = []
 | |
|     forest = []
 | |
| 
 | |
|     for i in range(len(peaks_neg)):
 | |
|         if i == 0:
 | |
|             forest.append(peaks_neg[i])
 | |
|         if i < (len(peaks_neg) - 1):
 | |
|             if diff_peaks[i] <= cut_off:
 | |
|                 forest.append(peaks_neg[i + 1])
 | |
|             if diff_peaks[i] > cut_off:
 | |
|                 # print(forest[np.argmin(z[forest]) ] )
 | |
|                 if not isNaN(forest[np.argmin(z[forest])]):
 | |
|                     peaks_neg_true.append(forest[np.argmin(z[forest])])
 | |
|                 forest = []
 | |
|                 forest.append(peaks_neg[i + 1])
 | |
|         if i == (len(peaks_neg) - 1):
 | |
|             # print(print(forest[np.argmin(z[forest]) ] ))
 | |
|             if not isNaN(forest[np.argmin(z[forest])]):
 | |
|                 peaks_neg_true.append(forest[np.argmin(z[forest])])
 | |
| 
 | |
|     diff_peaks_pos = np.abs(np.diff(peaks))
 | |
| 
 | |
|     cut_off = 20
 | |
|     peaks_pos_true = []
 | |
|     forest = []
 | |
| 
 | |
|     for i in range(len(peaks)):
 | |
|         if i == 0:
 | |
|             forest.append(peaks[i])
 | |
|         if i < (len(peaks) - 1):
 | |
|             if diff_peaks_pos[i] <= cut_off:
 | |
|                 forest.append(peaks[i + 1])
 | |
|             if diff_peaks_pos[i] > cut_off:
 | |
|                 # print(forest[np.argmin(z[forest]) ] )
 | |
|                 if not isNaN(forest[np.argmax(z[forest])]):
 | |
|                     peaks_pos_true.append(forest[np.argmax(z[forest])])
 | |
|                 forest = []
 | |
|                 forest.append(peaks[i + 1])
 | |
|         if i == (len(peaks) - 1):
 | |
|             # print(print(forest[np.argmin(z[forest]) ] ))
 | |
|             if not isNaN(forest[np.argmax(z[forest])]):
 | |
|                 peaks_pos_true.append(forest[np.argmax(z[forest])])
 | |
| 
 | |
|     # print(len(peaks_neg_true) ,len(peaks_pos_true) ,'lensss')
 | |
| 
 | |
|     if len(peaks_neg_true) > 0:
 | |
|         peaks_neg_true = np.array(peaks_neg_true)
 | |
|         """
 | |
|         #plt.figure(figsize=(40,40))
 | |
|         #plt.subplot(1,2,1)
 | |
|         #plt.title('Textline segmentation von Textregion')
 | |
|         #plt.imshow(img_path)
 | |
|         #plt.xlabel('X')
 | |
|         #plt.ylabel('Y')
 | |
|         #plt.subplot(1,2,2)
 | |
|         #plt.title('Dichte entlang X')
 | |
|         #base = pyplot.gca().transData
 | |
|         #rot = transforms.Affine2D().rotate_deg(90)
 | |
|         #plt.plot(zneg,np.array(range(len(zneg))))
 | |
|         #plt.plot(zneg[peaks_neg_true],peaks_neg_true,'*')
 | |
|         #plt.gca().invert_yaxis()
 | |
| 
 | |
|         #plt.xlabel('Dichte')
 | |
|         #plt.ylabel('Y')
 | |
|         ##plt.plot([0,len(y)], [grenze,grenze])
 | |
|         #plt.show()
 | |
|         """
 | |
|         peaks_neg_true = peaks_neg_true - 20 - 20
 | |
| 
 | |
|         # print(peaks_neg_true)
 | |
|         for i in range(len(peaks_neg_true)):
 | |
|             img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
 | |
| 
 | |
|     else:
 | |
|         pass
 | |
| 
 | |
|     if len(peaks_pos_true) > 0:
 | |
|         peaks_pos_true = np.array(peaks_pos_true)
 | |
|         peaks_pos_true = peaks_pos_true - 20
 | |
| 
 | |
|         for i in range(len(peaks_pos_true)):
 | |
|             img_path[peaks_pos_true[i] - 8 : peaks_pos_true[i] + 8, :] = 1
 | |
|     else:
 | |
|         pass
 | |
|     kernel = np.ones((5, 5), np.uint8)
 | |
| 
 | |
|     # img_path = cv2.erode(img_path,kernel,iterations = 3)
 | |
|     img_path = cv2.erode(img_path, kernel, iterations=2)
 | |
|     return img_path
 | |
| 
 | |
| def seperate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_ind, add_boxes_coor_into_textlines):
 | |
|     kernel = np.ones((5, 5), np.uint8)
 | |
|     pixel = 255
 | |
|     min_area = 0
 | |
|     max_area = 1
 | |
| 
 | |
|     if len(img_patch.shape) == 3:
 | |
|         cnts_images = (img_patch[:, :, 0] == pixel) * 1
 | |
|     else:
 | |
|         cnts_images = (img_patch[:, :] == pixel) * 1
 | |
|     cnts_images = cnts_images.astype(np.uint8)
 | |
|     cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
 | |
|     imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
 | |
|     ret, thresh = cv2.threshold(imgray, 0, 255, 0)
 | |
|     contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 | |
| 
 | |
|     contours_imgs = return_parent_contours(contours_imgs, hiearchy)
 | |
|     contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=max_area, min_area=min_area)
 | |
| 
 | |
|     cont_final = []
 | |
|     ###print(add_boxes_coor_into_textlines,'ikki')
 | |
|     for i in range(len(contours_imgs)):
 | |
|         img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3))
 | |
|         img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255))
 | |
| 
 | |
|         img_contour = img_contour.astype(np.uint8)
 | |
| 
 | |
|         img_contour = cv2.dilate(img_contour, kernel, iterations=4)
 | |
|         imgrayrot = cv2.cvtColor(img_contour, cv2.COLOR_BGR2GRAY)
 | |
|         _, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
 | |
|         contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 | |
| 
 | |
|         ##contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[
 | |
|         ##0]
 | |
|         ##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
 | |
|         ##if add_boxes_coor_into_textlines:
 | |
|         ##print(np.shape(contours_text_rot[0]),'sjppo')
 | |
|         ##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0]
 | |
|         ##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1]
 | |
|         cont_final.append(contours_text_rot[0])
 | |
| 
 | |
|     ##print(cont_final,'nadizzzz')
 | |
|     return None, cont_final
 | |
| 
 | |
| 
 |