eynollah/docs/ocrd.md
2025-10-20 22:52:54 +02:00

26 lines
1.4 KiB
Markdown

## Use as OCR-D processor
Eynollah ships with a CLI interface to be used as [OCR-D](https://ocr-d.de) [processor](https://ocr-d.de/en/spec/cli),
formally described in [`ocrd-tool.json`](https://github.com/qurator-spk/eynollah/tree/main/src/eynollah/ocrd-tool.json).
When using Eynollah in OCR-D, the source image file group with (preferably) RGB images should be used as input like this:
ocrd-eynollah-segment -I OCR-D-IMG -O OCR-D-SEG -P models eynollah_layout_v0_5_0
If the input file group is PAGE-XML (from a previous OCR-D workflow step), Eynollah behaves as follows:
- existing regions are kept and ignored (i.e. in effect they might overlap segments from Eynollah results)
- existing annotation (and respective `AlternativeImage`s) are partially _ignored_:
- previous page frame detection (`cropped` images)
- previous derotation (`deskewed` images)
- previous thresholding (`binarized` images)
- if the page-level image nevertheless deviates from the original (`@imageFilename`)
(because some other preprocessing step was in effect like `denoised`), then
the output PAGE-XML will be based on that as new top-level (`@imageFilename`)
ocrd-eynollah-segment -I OCR-D-XYZ -O OCR-D-SEG -P models eynollah_layout_v0_5_0
In general, it makes more sense to add other workflow steps **after** Eynollah.
There is also an OCR-D processor for binarization:
ocrd-sbb-binarize -I OCR-D-IMG -O OCR-D-BIN -P models default-2021-03-09