eynollah/docs/docker.md
2025-10-20 22:16:56 +02:00

43 lines
1.5 KiB
Markdown

## Inference with Docker
docker pull ghcr.io/qurator-spk/eynollah:latest
### 1. ocrd resource manager
(just once, to get the models and install them into a named volume for later re-use)
vol_models=ocrd-resources:/usr/local/share/ocrd-resources
docker run --rm -v $vol_models ocrd/eynollah ocrd resmgr download ocrd-eynollah-segment default
Now, each time you want to use Eynollah, pass the same resources volume again.
Also, bind-mount some data directory, e.g. current working directory $PWD (/data is default working directory in the container).
Either use standalone CLI (2) or OCR-D CLI (3):
### 2. standalone CLI
(follow self-help, cf. readme)
docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah eynollah binarization --help
docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah eynollah layout --help
docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah eynollah ocr --help
### 3. OCR-D CLI
(follow self-help, cf. readme and https://ocr-d.de/en/spec/cli)
docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah ocrd-eynollah-segment -h
docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah ocrd-sbb-binarize -h
Alternatively, just "log in" to the container once and use the commands there:
docker run --rm -v $vol_models -v $PWD:/data -it ocrd/eynollah bash
## Training with Docker
Build the Docker image
cd train
docker build -t model-training .
Run the Docker image
cd train
docker run --gpus all -v $PWD:/entry_point_dir model-training