mirror of
https://github.com/qurator-spk/modstool.git
synced 2025-06-25 19:49:54 +02:00
🤓 Add type annotations (and related changes)
This commit is contained in:
parent
d685454c52
commit
ebdded90d6
1 changed files with 11 additions and 9 deletions
|
@ -4,7 +4,7 @@ from itertools import groupby
|
|||
import re
|
||||
import warnings
|
||||
import os
|
||||
from typing import List, Sequence, MutableMapping, Dict
|
||||
from typing import Any, List, Sequence, MutableMapping, Dict
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
@ -229,12 +229,14 @@ class TagGroup:
|
|||
Extract values using the given XPath expression, convert them to float and return descriptive
|
||||
statistics on the values.
|
||||
"""
|
||||
values = []
|
||||
for e in self.group:
|
||||
r = e.xpath(xpath_expr, namespaces=namespaces)
|
||||
values += r
|
||||
values = np.array([float(v) for v in values])
|
||||
def xpath_values():
|
||||
values = []
|
||||
for e in self.group:
|
||||
r = e.xpath(xpath_expr, namespaces=namespaces)
|
||||
values += r
|
||||
return np.array([float(v) for v in values])
|
||||
|
||||
values = xpath_values()
|
||||
statistics = {}
|
||||
if values.size > 0:
|
||||
statistics[f'{xpath_expr}-mean'] = np.mean(values)
|
||||
|
@ -294,7 +296,7 @@ def flatten(d: MutableMapping, parent='', separator='_') -> dict:
|
|||
|
||||
It is assumed that d maps strings to either another dictionary (similarly structured) or some other value.
|
||||
"""
|
||||
items = []
|
||||
items: list[Any] = []
|
||||
|
||||
for k, v in d.items():
|
||||
if parent:
|
||||
|
@ -324,8 +326,8 @@ def column_names_csv(columns) -> str:
|
|||
"""
|
||||
return ",".join('"' + c + '"' for c in columns)
|
||||
|
||||
current_columns: defaultdict = defaultdict(list)
|
||||
current_columns_types: dict[dict] = defaultdict(dict)
|
||||
current_columns: dict[str, list] = defaultdict(list)
|
||||
current_columns_types: dict[str, dict] = defaultdict(dict)
|
||||
|
||||
def insert_into_db(con, table, d: Dict):
|
||||
"""Insert the values from the dict into the table, creating columns if necessary"""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue