|
|
|
import glob
|
|
|
|
import re
|
|
|
|
import os
|
|
|
|
from io import StringIO
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import click
|
|
|
|
import pandas as pd
|
|
|
|
import requests
|
|
|
|
from lxml import etree as ET
|
|
|
|
|
|
|
|
from ocrd_models.ocrd_page import parse
|
|
|
|
from ocrd_utils import bbox_from_points
|
|
|
|
|
|
|
|
from .tsv import read_tsv, write_tsv, extract_doc_links
|
|
|
|
from .ocr import get_conf_color
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1)
|
|
|
|
@click.argument('url-file', type=click.Path(exists=False), required=True, nargs=1)
|
|
|
|
def extract_document_links(tsv_file, url_file):
|
|
|
|
|
|
|
|
parts = extract_doc_links(tsv_file)
|
|
|
|
|
|
|
|
urls = [part['url'] for part in parts]
|
|
|
|
|
|
|
|
urls = pd.DataFrame(urls, columns=['url'])
|
|
|
|
|
|
|
|
urls.to_csv(url_file, sep="\t", quoting=3, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1)
|
|
|
|
@click.argument('annotated-tsv-file', type=click.Path(exists=False), required=True, nargs=1)
|
|
|
|
def annotate_tsv(tsv_file, annotated_tsv_file):
|
|
|
|
|
|
|
|
parts = extract_doc_links(tsv_file)
|
|
|
|
|
|
|
|
annotated_parts = []
|
|
|
|
|
|
|
|
for part in parts:
|
|
|
|
|
|
|
|
part_data = StringIO(part['header'] + part['text'])
|
|
|
|
|
|
|
|
df = pd.read_csv(part_data, sep="\t", comment='#', quoting=3)
|
|
|
|
|
|
|
|
df['url_id'] = len(annotated_parts)
|
|
|
|
|
|
|
|
annotated_parts.append(df)
|
|
|
|
|
|
|
|
df = pd.concat(annotated_parts)
|
|
|
|
|
|
|
|
df.to_csv(annotated_tsv_file, sep="\t", quoting=3, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
def page2tsv(page_xml_file, tsv_out_file, purpose, image_url, ner_rest_endpoint, ned_rest_endpoint,
|
|
|
|
noproxy, scale_factor, ned_threshold, min_confidence, max_confidence, ned_priority):
|
|
|
|
if purpose == "NERD":
|
|
|
|
out_columns = ['No.', 'TOKEN', 'NE-TAG', 'NE-EMB', 'ID', 'url_id', 'left', 'right', 'top', 'bottom', 'conf']
|
|
|
|
elif purpose == "OCR":
|
|
|
|
out_columns = ['TEXT', 'url_id', 'left', 'right', 'top', 'bottom', 'conf', 'line_id']
|
|
|
|
if min_confidence is not None and max_confidence is not None:
|
|
|
|
out_columns += ['ocrconf']
|
|
|
|
else:
|
|
|
|
raise RuntimeError("Unknown purpose.")
|
|
|
|
|
|
|
|
if noproxy:
|
|
|
|
os.environ['no_proxy'] = '*'
|
|
|
|
|
|
|
|
urls = []
|
|
|
|
if os.path.exists(tsv_out_file):
|
|
|
|
parts = extract_doc_links(tsv_out_file)
|
|
|
|
urls = [part['url'] for part in parts]
|
|
|
|
else:
|
|
|
|
pd.DataFrame([], columns=out_columns).to_csv(tsv_out_file, sep="\t", quoting=3, index=False)
|
|
|
|
|
|
|
|
pcgts = parse(page_xml_file)
|
|
|
|
tsv = []
|
|
|
|
line_info = []
|
|
|
|
|
|
|
|
for region_idx, region in enumerate(pcgts.get_Page().get_AllRegions(classes=['Text'], order='reading-order')):
|
|
|
|
for text_line in region.get_TextLine():
|
|
|
|
left, top, right, bottom = [int(scale_factor * x) for x in bbox_from_points(text_line.get_Coords().points)]
|
|
|
|
|
|
|
|
if min_confidence is not None and max_confidence is not None:
|
|
|
|
conf = np.max([textequiv.conf for textequiv in text_line.get_TextEquiv()])
|
|
|
|
else:
|
|
|
|
conf = np.nan
|
|
|
|
|
|
|
|
line_info.append((len(urls), left, right, top, bottom, conf, text_line.id))
|
|
|
|
|
|
|
|
words = [word for word in text_line.get_Word()]
|
|
|
|
|
|
|
|
if len(words) <= 0:
|
|
|
|
for text_equiv in text_line.get_TextEquiv():
|
|
|
|
# transform OCR coordinates using `scale_factor` to derive
|
|
|
|
# correct coordinates for the web presentation image
|
|
|
|
left, top, right, bottom = [int(scale_factor * x) for x in bbox_from_points(text_line.get_Coords().points)]
|
|
|
|
tsv.append((region_idx, len(line_info) - 1, left + (right - left) / 2.0,
|
|
|
|
text_equiv.get_Unicode(), len(urls), left, right, top, bottom, text_line.id))
|
|
|
|
else:
|
|
|
|
for word in words:
|
|
|
|
# XXX TODO make this configurable
|
|
|
|
textequiv = ''
|
|
|
|
list_textequivs = word.get_TextEquiv()
|
|
|
|
if list_textequivs:
|
|
|
|
textequiv = list_textequivs[0].get_Unicode()
|
|
|
|
# transform OCR coordinates using `scale_factor` to derive
|
|
|
|
# correct coordinates for the web presentation image
|
|
|
|
left, top, right, bottom = [int(scale_factor * x) for x in bbox_from_points(word.get_Coords().points)]
|
|
|
|
tsv.append((region_idx, len(line_info) - 1, left + (right - left) / 2.0,
|
|
|
|
textequiv, len(urls), left, right, top, bottom, text_line.id))
|
|
|
|
|
|
|
|
line_info = pd.DataFrame(line_info, columns=['url_id', 'left', 'right', 'top', 'bottom', 'conf', 'line_id'])
|
|
|
|
|
|
|
|
if min_confidence is not None and max_confidence is not None:
|
|
|
|
line_info['ocrconf'] = line_info.conf.map(lambda x: get_conf_color(x, min_confidence, max_confidence))
|
|
|
|
|
|
|
|
tsv = pd.DataFrame(tsv, columns=['rid', 'line', 'hcenter'] +
|
|
|
|
['TEXT', 'url_id', 'left', 'right', 'top', 'bottom', 'line_id'])
|
|
|
|
|
|
|
|
# print(tsv)
|
|
|
|
with open(tsv_out_file, 'a') as f:
|
|
|
|
f.write('# ' + image_url + '\n')
|
|
|
|
|
|
|
|
if len(tsv) == 0:
|
|
|
|
return
|
|
|
|
|
|
|
|
vlinecenter = pd.DataFrame(tsv[['line', 'top']].groupby('line', sort=False).mean().top +
|
|
|
|
(tsv[['line', 'bottom']].groupby('line', sort=False).mean().bottom -
|
|
|
|
tsv[['line', 'top']].groupby('line', sort=False).mean().top) / 2,
|
|
|
|
columns=['vlinecenter'])
|
|
|
|
|
|
|
|
tsv = tsv.merge(vlinecenter, left_on='line', right_index=True)
|
|
|
|
regions = [region.sort_values(['vlinecenter', 'hcenter']) for rid, region in tsv.groupby('rid', sort=False)]
|
|
|
|
tsv = pd.concat(regions)
|
|
|
|
|
|
|
|
if purpose == 'NERD':
|
|
|
|
tsv['No.'] = 0
|
|
|
|
tsv['NE-TAG'] = 'O'
|
|
|
|
tsv['NE-EMB'] = 'O'
|
|
|
|
tsv['ID'] = '-'
|
|
|
|
tsv['conf'] = '-'
|
|
|
|
tsv = tsv.rename(columns={'TEXT': 'TOKEN'})
|
|
|
|
|
|
|
|
elif purpose == 'OCR':
|
|
|
|
tsv = pd.DataFrame([(line, " ".join(part.TEXT.to_list())) for line, part in tsv.groupby('line')],
|
|
|
|
columns=['line', 'TEXT'])
|
|
|
|
tsv = tsv.merge(line_info, left_on='line', right_index=True)
|
|
|
|
tsv = tsv[out_columns].reset_index(drop=True)
|
|
|
|
|
|
|
|
try:
|
|
|
|
if purpose == 'NERD' and ner_rest_endpoint is not None:
|
|
|
|
tsv, ner_result = ner(tsv, ner_rest_endpoint)
|
|
|
|
if ned_rest_endpoint is not None:
|
|
|
|
tsv, _ = ned(tsv, ner_result, ned_rest_endpoint, threshold=ned_threshold, priority=ned_priority)
|
|
|
|
tsv.to_csv(tsv_out_file, sep="\t", quoting=3, index=False, mode='a', header=False)
|
|
|
|
except requests.HTTPError as e:
|
|
|
|
print(e)
|
|
|
|
|
|
|
|
def tsv2page(output_filename, keep_words, page_file, tsv_file):
|
|
|
|
if not output_filename:
|
|
|
|
output_filename = Path(page_file).stem + '.corrected.xml'
|
|
|
|
ns = {'pc': 'http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15'}
|
|
|
|
tsv = pd.read_csv(tsv_file, sep='\t', comment='#', quoting=3)
|
|
|
|
tree = ET.parse(page_file)
|
|
|
|
for _, row in tsv.iterrows():
|
|
|
|
el_textline = tree.find(f'//pc:TextLine[@id="{row.line_id}"]', namespaces=ns)
|
|
|
|
el_textline.find('pc:TextEquiv/pc:Unicode', namespaces=ns).text = row.TEXT
|
|
|
|
if not keep_words:
|
|
|
|
for el_word in el_textline.findall('pc:Word', namespaces=ns):
|
|
|
|
el_textline.remove(el_word)
|
|
|
|
with open(output_filename, 'w', encoding='utf-8') as f:
|
|
|
|
f.write(ET.tostring(tree, pretty_print=True).decode('utf-8'))
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.option('--output-filename', '-o', help="Output filename. "
|
|
|
|
"If omitted, PAGE-XML filename with .corrected.xml extension")
|
|
|
|
@click.option('--keep-words', '-k', is_flag=True, help="Keep (out-of-date) Words of TextLines")
|
|
|
|
@click.argument('page-file')
|
|
|
|
@click.argument('tsv-file')
|
|
|
|
def tsv2page_cli(output_filename, keep_words, page_file, tsv_file):
|
|
|
|
return tsv2page_cli(output_filename, keep_words, page_file, tsv_file)
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.option('--xls-file', type=click.Path(exists=True), default=None,
|
|
|
|
help="Read parameters from xls-file. Expected columns: Filename, iiif_url, scale_factor.")
|
|
|
|
@click.option('--directory', type=click.Path(exists=True), default=None,
|
|
|
|
help="Search directory for PPN**/*.xml files. Extract PPN and file number into image-url.")
|
|
|
|
@click.option('--purpose', type=click.Choice(['NERD', 'OCR'], case_sensitive=False), default="NERD",
|
|
|
|
help="Purpose of output tsv file. "
|
|
|
|
"\n\nNERD: NER/NED application/ground-truth creation. "
|
|
|
|
"\n\nOCR: OCR application/ground-truth creation. "
|
|
|
|
"\n\ndefault: NERD.")
|
|
|
|
def make_page2tsv_commands(xls_file, directory, purpose):
|
|
|
|
if xls_file is not None:
|
|
|
|
|
|
|
|
if xls_file.endswith(".xls"):
|
|
|
|
df = pd.read_excel(xls_file)
|
|
|
|
else:
|
|
|
|
df = pd.read_excel(xls_file, engine='openpyxl')
|
|
|
|
|
|
|
|
df = df.dropna(how='all')
|
|
|
|
|
|
|
|
for _, row in df.iterrows():
|
|
|
|
print('page2tsv $(OPTIONS) {}.xml {}.tsv --image-url={} --scale-factor={} --purpose={}'.
|
|
|
|
format(row.Filename, row.Filename, row.iiif_url.replace('/full/full', '/left,top,width,height/full'),
|
|
|
|
row.scale_factor, purpose))
|
|
|
|
|
|
|
|
elif directory is not None:
|
|
|
|
for file in glob.glob('{}/**/*.xml'.format(directory), recursive=True):
|
|
|
|
|
|
|
|
ma = re.match('(.*/(PPN[0-9X]+)/.*?([0-9]+).*?).xml', file)
|
|
|
|
|
|
|
|
if ma:
|
|
|
|
print('page2tsv {} {}.tsv '
|
|
|
|
'--image-url=https://content.staatsbibliothek-berlin.de/dc/'
|
|
|
|
'{}-{:08d}/left,top,width,height/full/0/default.jpg --scale-factor=1.0 --purpose={}'.
|
|
|
|
format(file, ma.group(1), ma.group(2), int(ma.group(3)), purpose))
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.argument('page-xml-file', type=click.Path(exists=True), required=True, nargs=1)
|
|
|
|
@click.argument('tsv-out-file', type=click.Path(), required=True, nargs=1)
|
|
|
|
@click.option('--purpose', type=click.Choice(['NERD', 'OCR'], case_sensitive=False), default="NERD",
|
|
|
|
help="Purpose of output tsv file. "
|
|
|
|
"\n\nNERD: NER/NED application/ground-truth creation. "
|
|
|
|
"\n\nOCR: OCR application/ground-truth creation. "
|
|
|
|
"\n\ndefault: NERD.")
|
|
|
|
@click.option('--image-url', type=str, default='http://empty')
|
|
|
|
@click.option('--ner-rest-endpoint', type=str, default=None,
|
|
|
|
help="REST endpoint of sbb_ner service. See https://github.com/qurator-spk/sbb_ner for details. "
|
|
|
|
"Only applicable in case of NERD.")
|
|
|
|
@click.option('--ned-rest-endpoint', type=str, default=None,
|
|
|
|
help="REST endpoint of sbb_ned service. See https://github.com/qurator-spk/sbb_ned for details. "
|
|
|
|
"Only applicable in case of NERD.")
|
|
|
|
@click.option('--noproxy', type=bool, is_flag=True, help='disable proxy. default: enabled.')
|
|
|
|
@click.option('--scale-factor', type=float, default=1.0, help='default: 1.0')
|
|
|
|
@click.option('--ned-threshold', type=float, default=None)
|
|
|
|
@click.option('--min-confidence', type=float, default=None)
|
|
|
|
@click.option('--max-confidence', type=float, default=None)
|
|
|
|
@click.option('--ned-priority', type=int, default=1)
|
|
|
|
def page2tsv_cli(page_xml_file, tsv_out_file, purpose, image_url, ner_rest_endpoint, ned_rest_endpoint,
|
|
|
|
noproxy, scale_factor, ned_threshold, min_confidence, max_confidence, ned_priority):
|
|
|
|
return page2tsv(page_xml_file, tsv_out_file, purpose, image_url, ner_rest_endpoint, ned_rest_endpoint,
|
|
|
|
noproxy, scale_factor, ned_threshold, min_confidence, max_confidence, ned_priority)
|