|
|
|
# Binarization
|
|
|
|
|
|
|
|
> Binarization for document images
|
|
|
|
|
|
|
|
## Examples
|
|
|
|
|
|
|
|
<img src="https://user-images.githubusercontent.com/952378/63592437-e433e400-c5b1-11e9-9c2d-889c6e93d748.jpg" width="180"><img src="https://user-images.githubusercontent.com/952378/63592435-e433e400-c5b1-11e9-88e4-3e441b61fa67.jpg" width="180"><img src="https://user-images.githubusercontent.com/952378/63592440-e4cc7a80-c5b1-11e9-8964-2cd1b22c87be.jpg" width="220"><img src="https://user-images.githubusercontent.com/952378/63592438-e4cc7a80-c5b1-11e9-86dc-a9e9f8555422.jpg" width="220">
|
|
|
|
|
|
|
|
## Introduction
|
|
|
|
|
|
|
|
This tool performs document image binarization using a trained ResNet50-UNet model.
|
|
|
|
|
|
|
|
## Installation
|
|
|
|
|
|
|
|
Clone the repository, enter it and run
|
|
|
|
|
|
|
|
`pip install .`
|
|
|
|
|
|
|
|
### Models
|
|
|
|
|
|
|
|
Pre-trained models in `HDF5` format can be downloaded from here:
|
|
|
|
|
|
|
|
https://qurator-data.de/sbb_binarization/
|
|
|
|
|
|
|
|
We also provide a Tensorflow `saved_model` via Huggingface:
|
|
|
|
|
|
|
|
https://huggingface.co/SBB/sbb_binarization
|
|
|
|
|
|
|
|
## Usage
|
|
|
|
|
|
|
|
```sh
|
|
|
|
sbb_binarize \
|
|
|
|
-m <path to directory containing model files \
|
|
|
|
<input image> \
|
|
|
|
<output image>
|
|
|
|
```
|
|
|
|
|
|
|
|
Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results.
|
|
|
|
|
|
|
|
### Example
|
|
|
|
|
|
|
|
```sh
|
|
|
|
sbb_binarize -m /path/to/model/ myimage.tif myimage-bin.tif
|
|
|
|
```
|
|
|
|
|
|
|
|
To use the [OCR-D](https://ocr-d.de/) interface:
|
|
|
|
```sh
|
|
|
|
ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"
|
|
|
|
```
|