# Binarization
> Binarization for document images
## Examples
< img src = "https://user-images.githubusercontent.com/952378/63592437-e433e400-c5b1-11e9-9c2d-889c6e93d748.jpg" width = "180" > < img src = "https://user-images.githubusercontent.com/952378/63592435-e433e400-c5b1-11e9-88e4-3e441b61fa67.jpg" width = "180" > < img src = "https://user-images.githubusercontent.com/952378/63592440-e4cc7a80-c5b1-11e9-8964-2cd1b22c87be.jpg" width = "220" > < img src = "https://user-images.githubusercontent.com/952378/63592438-e4cc7a80-c5b1-11e9-86dc-a9e9f8555422.jpg" width = "220" >
## Introduction
This tool performs document image binarization using trained models. The method is based on [Calvo-Zaragoza and Gallego, 2018 ](https://arxiv.org/abs/1706.10241 ).
## Installation
Clone the repository, enter it and run
`pip install .`
### Models
Pre-trained models can be downloaded from here:
https://qurator-data.de/sbb_binarization/
## Usage
```sh
sbb_binarize \
--patches \
-m < path to directory containing model files > \
< input image > \
< output image >
```
**Note** In virtually all cases, applying the `--patches` flag will improve the quality of results.
Example
```sh
sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif
```
To use the [OCR-D ](https://ocr-d.de/ ) interface:
```sh
ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"
```