sbb_binarization/README.md

50 lines
1.4 KiB
Markdown
Raw Normal View History

2020-01-15 19:49:18 +01:00
# Binarization
2020-01-15 19:49:18 +01:00
> Binarization for document images
2019-12-10 13:00:05 +01:00
2020-10-29 00:48:24 +01:00
## Examples
2020-10-29 00:48:03 +01:00
<img src="https://user-images.githubusercontent.com/952378/63592437-e433e400-c5b1-11e9-9c2d-889c6e93d748.jpg" width="180"><img src="https://user-images.githubusercontent.com/952378/63592435-e433e400-c5b1-11e9-88e4-3e441b61fa67.jpg" width="180"><img src="https://user-images.githubusercontent.com/952378/63592440-e4cc7a80-c5b1-11e9-8964-2cd1b22c87be.jpg" width="220"><img src="https://user-images.githubusercontent.com/952378/63592438-e4cc7a80-c5b1-11e9-86dc-a9e9f8555422.jpg" width="220">
2020-01-15 19:49:18 +01:00
## Introduction
This tool performs document image binarization using a trained ResNet50-UNet model.
2019-12-10 13:00:05 +01:00
2020-01-15 19:49:18 +01:00
## Installation
Clone the repository, enter it and run
`pip install .`
2020-01-15 19:49:18 +01:00
2020-01-16 15:56:32 +01:00
### Models
Pre-trained models in `HDF5` format can be downloaded from here:
2020-01-16 15:47:52 +01:00
https://qurator-data.de/sbb_binarization/
2020-01-15 19:49:18 +01:00
We also provide a Tensorflow `saved_model` via Huggingface:
https://huggingface.co/SBB/sbb_binarization
## Usage
```sh
sbb_binarize \
2022-04-25 19:24:04 +02:00
-m <path to directory containing model files> \
<input image> \
<output image>
```
Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results.
2022-04-25 19:24:04 +02:00
### Example
2022-04-25 19:24:04 +02:00
```sh
sbb_binarize -m /path/to/models/ myimage.tif myimage-bin.tif
2022-04-25 19:24:04 +02:00
```
2022-04-25 19:24:04 +02:00
To use the [OCR-D](https://ocr-d.de/) interface:
```sh
ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"
```