|
|
|
@ -22,50 +22,35 @@ def resize_image(img_in, input_height, input_width):
|
|
|
|
|
|
|
|
|
|
class SbbBinarizer:
|
|
|
|
|
|
|
|
|
|
# TODO use True/False for patches
|
|
|
|
|
def __init__(self, model, image=None, image_path=None, patches='false', save=None):
|
|
|
|
|
if (image is not None and image_path is not None) or \
|
|
|
|
|
(image is None and image_path is None):
|
|
|
|
|
raise ValueError("Must pass either a opencv2 image or an image_path")
|
|
|
|
|
if image is not None:
|
|
|
|
|
self.image = image
|
|
|
|
|
else:
|
|
|
|
|
self.image = cv2.imread(self.image)
|
|
|
|
|
self.patches = patches
|
|
|
|
|
self.save = save
|
|
|
|
|
self.model_dir = model
|
|
|
|
|
def __init__(self, model_dir):
|
|
|
|
|
self.model_dir = model_dir
|
|
|
|
|
|
|
|
|
|
def start_new_session_and_model(self):
|
|
|
|
|
def start_new_session(self):
|
|
|
|
|
config = tf.ConfigProto()
|
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
|
|
|
|
|
|
self.session = tf.Session(config=config) # tf.InteractiveSession()
|
|
|
|
|
|
|
|
|
|
def load_model(self, model_name):
|
|
|
|
|
|
|
|
|
|
self.model = load_model(join(self.model_dir, model_name), compile=False)
|
|
|
|
|
|
|
|
|
|
self.img_height = self.model.layers[len(self.model.layers)-1].output_shape[1]
|
|
|
|
|
self.img_width = self.model.layers[len(self.model.layers)-1].output_shape[2]
|
|
|
|
|
self.n_classes = self.model.layers[len(self.model.layers)-1].output_shape[3]
|
|
|
|
|
|
|
|
|
|
def end_session(self):
|
|
|
|
|
self.session.close()
|
|
|
|
|
del self.model
|
|
|
|
|
del self.session
|
|
|
|
|
|
|
|
|
|
def predict(self,model_name):
|
|
|
|
|
self.load_model(model_name)
|
|
|
|
|
img = self.image
|
|
|
|
|
img_width_model = self.img_width
|
|
|
|
|
img_height_model = self.img_height
|
|
|
|
|
def load_model(self, model_name):
|
|
|
|
|
model = load_model(join(self.model_dir, model_name), compile=False)
|
|
|
|
|
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
|
|
|
|
model_width = model.layers[len(model.layers)-1].output_shape[2]
|
|
|
|
|
n_classes = model.layers[len(model.layers)-1].output_shape[3]
|
|
|
|
|
return model, model_height, model_width, n_classes
|
|
|
|
|
|
|
|
|
|
def predict(self, model_name, img, patches):
|
|
|
|
|
model, model_height, model_width, n_classes = self.load_model(model_name)
|
|
|
|
|
|
|
|
|
|
if self.patches in ('true', 'True'):
|
|
|
|
|
if patches in ('true', 'True'):
|
|
|
|
|
|
|
|
|
|
margin = int(0.1 * img_width_model)
|
|
|
|
|
margin = int(0.1 * model_width)
|
|
|
|
|
|
|
|
|
|
width_mid = img_width_model - 2 * margin
|
|
|
|
|
height_mid = img_height_model - 2 * margin
|
|
|
|
|
width_mid = model_width - 2 * margin
|
|
|
|
|
height_mid = model_height - 2 * margin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = img / float(255.0)
|
|
|
|
@ -93,28 +78,28 @@ class SbbBinarizer:
|
|
|
|
|
|
|
|
|
|
if i == 0:
|
|
|
|
|
index_x_d = i * width_mid
|
|
|
|
|
index_x_u = index_x_d + img_width_model
|
|
|
|
|
index_x_u = index_x_d + model_width
|
|
|
|
|
elif i > 0:
|
|
|
|
|
index_x_d = i * width_mid
|
|
|
|
|
index_x_u = index_x_d + img_width_model
|
|
|
|
|
index_x_u = index_x_d + model_width
|
|
|
|
|
|
|
|
|
|
if j == 0:
|
|
|
|
|
index_y_d = j * height_mid
|
|
|
|
|
index_y_u = index_y_d + img_height_model
|
|
|
|
|
index_y_u = index_y_d + model_height
|
|
|
|
|
elif j > 0:
|
|
|
|
|
index_y_d = j * height_mid
|
|
|
|
|
index_y_u = index_y_d + img_height_model
|
|
|
|
|
index_y_u = index_y_d + model_height
|
|
|
|
|
|
|
|
|
|
if index_x_u > img_w:
|
|
|
|
|
index_x_u = img_w
|
|
|
|
|
index_x_d = img_w - img_width_model
|
|
|
|
|
index_x_d = img_w - model_width
|
|
|
|
|
if index_y_u > img_h:
|
|
|
|
|
index_y_u = img_h
|
|
|
|
|
index_y_d = img_h - img_height_model
|
|
|
|
|
index_y_d = img_h - model_height
|
|
|
|
|
|
|
|
|
|
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
|
|
|
|
|
|
|
|
label_p_pred = self.model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
|
|
|
|
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
|
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
|
|
|
|
|
@ -189,10 +174,9 @@ class SbbBinarizer:
|
|
|
|
|
img_h_page = img.shape[0]
|
|
|
|
|
img_w_page = img.shape[1]
|
|
|
|
|
img = img / float(255.0)
|
|
|
|
|
img = resize_image(img, img_height_model, img_width_model)
|
|
|
|
|
img = resize_image(img, model_height, model_width)
|
|
|
|
|
|
|
|
|
|
label_p_pred = self.model.predict(
|
|
|
|
|
img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
|
|
|
|
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
|
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
@ -200,29 +184,35 @@ class SbbBinarizer:
|
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
|
return prediction_true[:,:,0]
|
|
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
|
self.start_new_session_and_model()
|
|
|
|
|
models_n = listdir(self.model_dir)
|
|
|
|
|
# TODO use True/False for patches
|
|
|
|
|
def run(self, image=None, image_path=None, save=None, patches='false'):
|
|
|
|
|
if (image is not None and image_path is not None) or \
|
|
|
|
|
(image is None and image_path is None):
|
|
|
|
|
raise ValueError("Must pass either a opencv2 image or an image_path")
|
|
|
|
|
if image_path is not None:
|
|
|
|
|
image = cv2.imread(image)
|
|
|
|
|
self.start_new_session()
|
|
|
|
|
list_of_model_files = listdir(self.model_dir)
|
|
|
|
|
img_last = 0
|
|
|
|
|
for model_in in models_n:
|
|
|
|
|
for model_in in list_of_model_files:
|
|
|
|
|
|
|
|
|
|
res = self.predict(model_in)
|
|
|
|
|
res = self.predict(model_in, image, patches)
|
|
|
|
|
|
|
|
|
|
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
|
|
|
|
res[:, :][res[:, :] == 0] = 2
|
|
|
|
|
res = res-1
|
|
|
|
|
res = res*255
|
|
|
|
|
res = res - 1
|
|
|
|
|
res = res * 255
|
|
|
|
|
img_fin[:, :, 0] = res
|
|
|
|
|
img_fin[:, :, 1] = res
|
|
|
|
|
img_fin[:, :, 2] = res
|
|
|
|
|
|
|
|
|
|
img_fin = img_fin.astype(np.uint8)
|
|
|
|
|
img_fin = (res[:, :] == 0)*255
|
|
|
|
|
img_last = img_last+img_fin
|
|
|
|
|
img_fin = (res[:, :] == 0) * 255
|
|
|
|
|
img_last = img_last + img_fin
|
|
|
|
|
|
|
|
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
|
|
|
img_last[:, :][img_last[:, :] > 0] = 255
|
|
|
|
|
img_last = (img_last[:, :] == 0)*255
|
|
|
|
|
if self.save:
|
|
|
|
|
cv2.imwrite(self.save, img_last)
|
|
|
|
|
img_last = (img_last[:, :] == 0) * 255
|
|
|
|
|
if save:
|
|
|
|
|
cv2.imwrite(save, img_last)
|
|
|
|
|
return img_last
|
|
|
|
|