mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-06-09 12:19:56 +02:00
SbbBinarizer: refactor (variable names, less instance-wide state)
This commit is contained in:
parent
a1c8f6f465
commit
1fa581283c
3 changed files with 51 additions and 73 deletions
|
@ -16,13 +16,8 @@ def main():
|
|||
|
||||
options = parser.parse_args()
|
||||
|
||||
binarizer = SbbBinarizer(
|
||||
image_path=options.image,
|
||||
model=options.model,
|
||||
patches=options.patches,
|
||||
save=options.save
|
||||
)
|
||||
binarizer.run()
|
||||
binarizer = SbbBinarizer(model_dir=options.model)
|
||||
binarizer.run(image_path=options.image, patches=options.patches, save=options.save)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
@ -39,14 +39,6 @@ class SbbBinarizeProcessor(Processor):
|
|||
kwargs['version'] = OCRD_TOOL['version']
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def _run_binarizer(self, img):
|
||||
return cv2pil(
|
||||
SbbBinarizer(
|
||||
image=pil2cv(img),
|
||||
model=self.model_path,
|
||||
patches=self.use_patches,
|
||||
save=None).run())
|
||||
|
||||
def process(self):
|
||||
"""
|
||||
Binarize with sbb_binarization
|
||||
|
@ -56,8 +48,9 @@ class SbbBinarizeProcessor(Processor):
|
|||
assert_file_grp_cardinality(self.output_file_grp, 1)
|
||||
|
||||
oplevel = self.parameter['operation_level']
|
||||
self.use_patches = self.parameter['patches'] # pylint: disable=attribute-defined-outside-init
|
||||
self.model_path = self.parameter['model'] # pylint: disable=attribute-defined-outside-init
|
||||
use_patches = self.parameter['patches'] # pylint: disable=attribute-defined-outside-init
|
||||
model_path = self.parameter['model'] # pylint: disable=attribute-defined-outside-init
|
||||
binarizer = SbbBinarizer(model_dir=self.model_path)
|
||||
|
||||
for n, input_file in enumerate(self.input_files):
|
||||
file_id = make_file_id(input_file, self.output_file_grp)
|
||||
|
@ -71,7 +64,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
if oplevel == 'page':
|
||||
LOG.info("Binarizing on 'page' level in page '%s'", page_id)
|
||||
page_image, page_xywh, _ = self.workspace.image_from_page(page, page_id, feature_filter='binarized')
|
||||
bin_image = self._run_binarizer(page_image)
|
||||
bin_image = cv2pil(binarizer.run(image=pil2cv(page_image), patches=use_patches))
|
||||
# update METS (add the image file):
|
||||
bin_image_path = self.workspace.save_image_file(bin_image,
|
||||
file_id + '.IMG-BIN',
|
||||
|
@ -85,7 +78,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
LOG.warning("Page '%s' contains no text/table regions", page_id)
|
||||
for region in regions:
|
||||
region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh, feature_filter='binarized')
|
||||
region_image_bin = self._run_binarizer(region_image)
|
||||
region_image_bin = cv2pil(binarizer.run(image=pil2cv(region_image), patches=use_patches))
|
||||
region_image_bin_path = self.workspace.save_image_file(
|
||||
region_image_bin,
|
||||
"%s_%s.IMG-BIN" % (file_id, region.id),
|
||||
|
@ -100,7 +93,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
LOG.warning("Page '%s' contains no text lines", page_id)
|
||||
for region_id, line in region_line_tuples:
|
||||
line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized')
|
||||
line_image_bin = self._run_binarizer(line_image)
|
||||
line_image_bin = cv2pil(binarizer.run(image=pil2cv(line_image), patches=use_patches))
|
||||
line_image_bin_path = self.workspace.save_image_file(
|
||||
line_image_bin,
|
||||
"%s_%s_%s.IMG-BIN" % (file_id, region_id, line.id),
|
||||
|
|
|
@ -22,50 +22,35 @@ def resize_image(img_in, input_height, input_width):
|
|||
|
||||
class SbbBinarizer:
|
||||
|
||||
# TODO use True/False for patches
|
||||
def __init__(self, model, image=None, image_path=None, patches='false', save=None):
|
||||
if (image is not None and image_path is not None) or \
|
||||
(image is None and image_path is None):
|
||||
raise ValueError("Must pass either a opencv2 image or an image_path")
|
||||
if image is not None:
|
||||
self.image = image
|
||||
else:
|
||||
self.image = cv2.imread(self.image)
|
||||
self.patches = patches
|
||||
self.save = save
|
||||
self.model_dir = model
|
||||
def __init__(self, model_dir):
|
||||
self.model_dir = model_dir
|
||||
|
||||
def start_new_session_and_model(self):
|
||||
def start_new_session(self):
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.allow_growth = True
|
||||
|
||||
self.session = tf.Session(config=config) # tf.InteractiveSession()
|
||||
|
||||
def load_model(self, model_name):
|
||||
|
||||
self.model = load_model(join(self.model_dir, model_name), compile=False)
|
||||
|
||||
self.img_height = self.model.layers[len(self.model.layers)-1].output_shape[1]
|
||||
self.img_width = self.model.layers[len(self.model.layers)-1].output_shape[2]
|
||||
self.n_classes = self.model.layers[len(self.model.layers)-1].output_shape[3]
|
||||
|
||||
def end_session(self):
|
||||
self.session.close()
|
||||
del self.model
|
||||
del self.session
|
||||
|
||||
def predict(self,model_name):
|
||||
self.load_model(model_name)
|
||||
img = self.image
|
||||
img_width_model = self.img_width
|
||||
img_height_model = self.img_height
|
||||
def load_model(self, model_name):
|
||||
model = load_model(join(self.model_dir, model_name), compile=False)
|
||||
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
||||
model_width = model.layers[len(model.layers)-1].output_shape[2]
|
||||
n_classes = model.layers[len(model.layers)-1].output_shape[3]
|
||||
return model, model_height, model_width, n_classes
|
||||
|
||||
if self.patches in ('true', 'True'):
|
||||
def predict(self, model_name, img, patches):
|
||||
model, model_height, model_width, n_classes = self.load_model(model_name)
|
||||
|
||||
margin = int(0.1 * img_width_model)
|
||||
if patches in ('true', 'True'):
|
||||
|
||||
width_mid = img_width_model - 2 * margin
|
||||
height_mid = img_height_model - 2 * margin
|
||||
margin = int(0.1 * model_width)
|
||||
|
||||
width_mid = model_width - 2 * margin
|
||||
height_mid = model_height - 2 * margin
|
||||
|
||||
|
||||
img = img / float(255.0)
|
||||
|
@ -93,28 +78,28 @@ class SbbBinarizer:
|
|||
|
||||
if i == 0:
|
||||
index_x_d = i * width_mid
|
||||
index_x_u = index_x_d + img_width_model
|
||||
index_x_u = index_x_d + model_width
|
||||
elif i > 0:
|
||||
index_x_d = i * width_mid
|
||||
index_x_u = index_x_d + img_width_model
|
||||
index_x_u = index_x_d + model_width
|
||||
|
||||
if j == 0:
|
||||
index_y_d = j * height_mid
|
||||
index_y_u = index_y_d + img_height_model
|
||||
index_y_u = index_y_d + model_height
|
||||
elif j > 0:
|
||||
index_y_d = j * height_mid
|
||||
index_y_u = index_y_d + img_height_model
|
||||
index_y_u = index_y_d + model_height
|
||||
|
||||
if index_x_u > img_w:
|
||||
index_x_u = img_w
|
||||
index_x_d = img_w - img_width_model
|
||||
index_x_d = img_w - model_width
|
||||
if index_y_u > img_h:
|
||||
index_y_u = img_h
|
||||
index_y_d = img_h - img_height_model
|
||||
index_y_d = img_h - model_height
|
||||
|
||||
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
||||
|
||||
label_p_pred = self.model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
||||
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
||||
|
||||
seg = np.argmax(label_p_pred, axis=3)[0]
|
||||
|
||||
|
@ -189,10 +174,9 @@ class SbbBinarizer:
|
|||
img_h_page = img.shape[0]
|
||||
img_w_page = img.shape[1]
|
||||
img = img / float(255.0)
|
||||
img = resize_image(img, img_height_model, img_width_model)
|
||||
img = resize_image(img, model_height, model_width)
|
||||
|
||||
label_p_pred = self.model.predict(
|
||||
img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
||||
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
||||
|
||||
seg = np.argmax(label_p_pred, axis=3)[0]
|
||||
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
||||
|
@ -200,29 +184,35 @@ class SbbBinarizer:
|
|||
prediction_true = prediction_true.astype(np.uint8)
|
||||
return prediction_true[:,:,0]
|
||||
|
||||
def run(self):
|
||||
self.start_new_session_and_model()
|
||||
models_n = listdir(self.model_dir)
|
||||
# TODO use True/False for patches
|
||||
def run(self, image=None, image_path=None, save=None, patches='false'):
|
||||
if (image is not None and image_path is not None) or \
|
||||
(image is None and image_path is None):
|
||||
raise ValueError("Must pass either a opencv2 image or an image_path")
|
||||
if image_path is not None:
|
||||
image = cv2.imread(image)
|
||||
self.start_new_session()
|
||||
list_of_model_files = listdir(self.model_dir)
|
||||
img_last = 0
|
||||
for model_in in models_n:
|
||||
for model_in in list_of_model_files:
|
||||
|
||||
res = self.predict(model_in)
|
||||
res = self.predict(model_in, image, patches)
|
||||
|
||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
||||
res[:, :][res[:, :] == 0] = 2
|
||||
res = res-1
|
||||
res = res*255
|
||||
res = res - 1
|
||||
res = res * 255
|
||||
img_fin[:, :, 0] = res
|
||||
img_fin[:, :, 1] = res
|
||||
img_fin[:, :, 2] = res
|
||||
|
||||
img_fin = img_fin.astype(np.uint8)
|
||||
img_fin = (res[:, :] == 0)*255
|
||||
img_last = img_last+img_fin
|
||||
img_fin = (res[:, :] == 0) * 255
|
||||
img_last = img_last + img_fin
|
||||
|
||||
kernel = np.ones((5, 5), np.uint8)
|
||||
img_last[:, :][img_last[:, :] > 0] = 255
|
||||
img_last = (img_last[:, :] == 0)*255
|
||||
if self.save:
|
||||
cv2.imwrite(self.save, img_last)
|
||||
img_last = (img_last[:, :] == 0) * 255
|
||||
if save:
|
||||
cv2.imwrite(save, img_last)
|
||||
return img_last
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue