mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-06-07 19:35:04 +02:00
reinstate ensemble combination and in-memory prediction
This commit is contained in:
parent
cade5dda73
commit
342e94e287
2 changed files with 37 additions and 23 deletions
|
@ -15,4 +15,4 @@ from .sbb_binarize import SbbBinarizer
|
||||||
def main(model_dir, input_image, output_image):
|
def main(model_dir, input_image, output_image):
|
||||||
binarizer = SbbBinarizer()
|
binarizer = SbbBinarizer()
|
||||||
binarizer.load_model(model_dir)
|
binarizer.load_model(model_dir)
|
||||||
binarizer.binarize_image(image_path=input_image, save_path=output_image)
|
binarizer.binarize_image_file(image_path=input_image, save_path=output_image)
|
||||||
|
|
|
@ -5,7 +5,7 @@ import math
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Union, List, Any
|
from typing import Union, List, Tuple, Any
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -24,37 +24,53 @@ from mpire.utils import make_single_arguments
|
||||||
class SbbBinarizer:
|
class SbbBinarizer:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.model: Any = None
|
self.models: List[Tuple[Any, int, int, int]] = []
|
||||||
self.model_height: int = 0
|
|
||||||
self.model_width: int = 0
|
|
||||||
self.n_classes: int = 0
|
|
||||||
|
|
||||||
def load_model(self, model_dir: Union[str, Path]):
|
def load_model(self, model_dir: Union[str, Path]):
|
||||||
model_dir = Path(model_dir)
|
model_dir = Path(model_dir)
|
||||||
self.model = load_model(str(model_dir.absolute()), compile=False)
|
model_paths = list(model_dir.glob('*.h5')) or list(model_dir.glob('*/'))
|
||||||
self.model_height = self.model.layers[len(self.model.layers) - 1].output_shape[1]
|
for path in model_paths:
|
||||||
self.model_width = self.model.layers[len(self.model.layers) - 1].output_shape[2]
|
model = load_model(str(path.absolute()), compile=False)
|
||||||
self.n_classes = self.model.layers[len(self.model.layers) - 1].output_shape[3]
|
height = model.layers[len(model.layers) - 1].output_shape[1]
|
||||||
|
width = model.layers[len(model.layers) - 1].output_shape[2]
|
||||||
|
classes = model.layers[len(model.layers) - 1].output_shape[3]
|
||||||
|
self.models.append((model, height, width, classes))
|
||||||
|
|
||||||
def binarize_image(self, image_path: Path, save_path: Path):
|
def binarize_image_file(self, image_path: Path, save_path: Path):
|
||||||
if not image_path.exists():
|
if not image_path.exists():
|
||||||
raise ValueError(f"Image not found: {str(image_path)}")
|
raise ValueError(f"Image not found: {str(image_path)}")
|
||||||
|
|
||||||
# noinspection PyUnresolvedReferences
|
# noinspection PyUnresolvedReferences
|
||||||
img = cv2.imread(str(image_path))
|
img = cv2.imread(str(image_path))
|
||||||
|
|
||||||
|
full_image = self.binarize_image(img)
|
||||||
|
|
||||||
|
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
# noinspection PyUnresolvedReferences
|
||||||
|
cv2.imwrite(str(save_path), full_image)
|
||||||
|
|
||||||
|
def binarize_image(self, img: np.ndarray) -> np.ndarray:
|
||||||
|
img_last = False
|
||||||
|
for model, model_height, model_width, _ in self.models:
|
||||||
|
img_res = self.binarize_image_by_model(img, model, model_height, model_width)
|
||||||
|
img_last = img_last + (img_res == 0)
|
||||||
|
img_last = (~img_last).astype(np.uint8) * 255
|
||||||
|
return img_last
|
||||||
|
|
||||||
|
def binarize_image_by_model(self, img: np.ndarray, model: Any, model_height: int, model_width: int) -> np.ndarray:
|
||||||
|
# Padded images must be multiples of model size
|
||||||
original_image_height, original_image_width, image_channels = img.shape
|
original_image_height, original_image_width, image_channels = img.shape
|
||||||
|
|
||||||
# Padded images must be multiples of model size
|
padded_image_height = math.ceil(original_image_height / model_height) * model_height
|
||||||
padded_image_height = math.ceil(original_image_height / self.model_height) * self.model_height
|
padded_image_width = math.ceil(original_image_width / model_width) * model_width
|
||||||
padded_image_width = math.ceil(original_image_width / self.model_width) * self.model_width
|
|
||||||
padded_image = np.zeros((padded_image_height, padded_image_width, image_channels))
|
padded_image = np.zeros((padded_image_height, padded_image_width, image_channels))
|
||||||
padded_image[0:original_image_height, 0:original_image_width, :] = img[:, :, :]
|
padded_image[0:original_image_height, 0:original_image_width, :] = img[:, :, :]
|
||||||
|
|
||||||
image_batch = np.expand_dims(padded_image, 0) # Create the batch dimension
|
image_batch = np.expand_dims(padded_image, 0) # Create the batch dimension
|
||||||
patches = tf.image.extract_patches(
|
patches = tf.image.extract_patches(
|
||||||
images=image_batch,
|
images=image_batch,
|
||||||
sizes=[1, self.model_height, self.model_width, 1],
|
sizes=[1, model_height, model_width, 1],
|
||||||
strides=[1, self.model_height, self.model_width, 1],
|
strides=[1, model_height, model_width, 1],
|
||||||
rates=[1, 1, 1, 1],
|
rates=[1, 1, 1, 1],
|
||||||
padding='SAME'
|
padding='SAME'
|
||||||
)
|
)
|
||||||
|
@ -62,13 +78,13 @@ class SbbBinarizer:
|
||||||
number_of_horizontal_patches = patches.shape[1]
|
number_of_horizontal_patches = patches.shape[1]
|
||||||
number_of_vertical_patches = patches.shape[2]
|
number_of_vertical_patches = patches.shape[2]
|
||||||
total_number_of_patches = number_of_horizontal_patches * number_of_vertical_patches
|
total_number_of_patches = number_of_horizontal_patches * number_of_vertical_patches
|
||||||
target_shape = (total_number_of_patches, self.model_height, self.model_width, image_channels)
|
target_shape = (total_number_of_patches, model_height, model_width, image_channels)
|
||||||
# Squeeze all image patches (n, m, width, height, channels) into a single big batch (b, width, height, channels)
|
# Squeeze all image patches (n, m, width, height, channels) into a single big batch (b, width, height, channels)
|
||||||
image_patches = tf.reshape(patches, target_shape)
|
image_patches = tf.reshape(patches, target_shape)
|
||||||
# Normalize the image to values between 0.0 - 1.0
|
# Normalize the image to values between 0.0 - 1.0
|
||||||
image_patches = image_patches / float(255.0)
|
image_patches = image_patches / float(255.0)
|
||||||
|
|
||||||
predicted_patches = self.model.predict(image_patches)
|
predicted_patches = model.predict(image_patches, verbose=0)
|
||||||
# We have to manually call garbage collection and clear_session here to avoid memory leaks.
|
# We have to manually call garbage collection and clear_session here to avoid memory leaks.
|
||||||
# Taken from https://medium.com/dive-into-ml-ai/dealing-with-memory-leak-issue-in-keras-model-training-e703907a6501
|
# Taken from https://medium.com/dive-into-ml-ai/dealing-with-memory-leak-issue-in-keras-model-training-e703907a6501
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
@ -83,13 +99,11 @@ class SbbBinarizer:
|
||||||
grayscale_patches,
|
grayscale_patches,
|
||||||
padded_image_height,
|
padded_image_height,
|
||||||
padded_image_width,
|
padded_image_width,
|
||||||
self.model_height,
|
model_height,
|
||||||
self.model_width
|
model_width
|
||||||
)
|
)
|
||||||
full_image = full_image_with_padding[0:original_image_height, 0:original_image_width]
|
full_image = full_image_with_padding[0:original_image_height, 0:original_image_width]
|
||||||
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
|
return full_image
|
||||||
# noinspection PyUnresolvedReferences
|
|
||||||
cv2.imwrite(str(save_path), full_image)
|
|
||||||
|
|
||||||
def _patches_to_image(self, patches: np.ndarray, image_height: int, image_width: int, patch_height: int, patch_width: int):
|
def _patches_to_image(self, patches: np.ndarray, image_height: int, image_width: int, patch_height: int, patch_width: int):
|
||||||
height = math.ceil(image_height / patch_height) * patch_height
|
height = math.ceil(image_height / patch_height) * patch_height
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue