mirror of
https://github.com/qurator-spk/sbb_binarization.git
synced 2025-08-07 09:09:58 +02:00
Update README
* recommend cropping (fix #49) * document huggingface saved_model
This commit is contained in:
parent
f11d0b0bf7
commit
56ccb39539
1 changed files with 10 additions and 4 deletions
14
README.md
14
README.md
|
@ -8,7 +8,7 @@
|
||||||
|
|
||||||
## Introduction
|
## Introduction
|
||||||
|
|
||||||
This tool performs document image binarization using trained models. The method is based on [Calvo-Zaragoza and Gallego, 2018](https://arxiv.org/abs/1706.10241).
|
This tool performs document image binarization using a trained ResNet50-UNet model.
|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
|
@ -18,10 +18,14 @@ Clone the repository, enter it and run
|
||||||
|
|
||||||
### Models
|
### Models
|
||||||
|
|
||||||
Pre-trained models can be downloaded from here:
|
Pre-trained models in `h5` format can be downloaded from here:
|
||||||
|
|
||||||
https://qurator-data.de/sbb_binarization/
|
https://qurator-data.de/sbb_binarization/
|
||||||
|
|
||||||
|
We also provide a Tensorflow `saved_model` via Huggingface:
|
||||||
|
|
||||||
|
https://huggingface.co/SBB/sbb_binarization
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
|
@ -32,9 +36,11 @@ sbb_binarize \
|
||||||
<output image>
|
<output image>
|
||||||
```
|
```
|
||||||
|
|
||||||
**Note** In virtually all cases, applying the `--patches` flag will improve the quality of results.
|
In virtually all cases, applying the `--patches` flag will improve the quality of results.
|
||||||
|
|
||||||
Example
|
Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results.
|
||||||
|
|
||||||
|
### Example
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif
|
sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue