mirror of
				https://github.com/qurator-spk/sbb_binarization.git
				synced 2025-11-04 03:24:16 +01:00 
			
		
		
		
	🎨 clean up code
This commit is contained in:
		
							parent
							
								
									150f03154f
								
							
						
					
					
						commit
						71d44408b3
					
				
					 1 changed files with 101 additions and 118 deletions
				
			
		| 
						 | 
					@ -1,60 +1,57 @@
 | 
				
			||||||
#! /usr/bin/env python3
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
__version__= '1.0'
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
import argparse
 | 
					 | 
				
			||||||
import sys
 | 
					 | 
				
			||||||
import os
 | 
					 | 
				
			||||||
import numpy as np
 | 
					 | 
				
			||||||
import warnings
 | 
					 | 
				
			||||||
import cv2
 | 
					 | 
				
			||||||
from keras.models import load_model
 | 
					 | 
				
			||||||
import tensorflow as tf
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
with warnings.catch_warnings():
 | 
					 | 
				
			||||||
    warnings.simplefilter("ignore")
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
__doc__=\
 | 
					 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
Tool to load model and binarize a given image.
 | 
					Tool to load model and binarize a given image.
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from argparse import ArgumentParser
 | 
				
			||||||
 | 
					from os import listdir
 | 
				
			||||||
 | 
					from os.path import join
 | 
				
			||||||
 | 
					from warnings import catch_warnings, simplefilter
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import cv2
 | 
				
			||||||
 | 
					from keras.models import load_model
 | 
				
			||||||
 | 
					import tensorflow as tf
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# XXX better to set env var before tensorflow import to suppress those specific warnings
 | 
				
			||||||
 | 
					with catch_warnings():
 | 
				
			||||||
 | 
					    simplefilter("ignore")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class sbb_binarize:
 | 
					class sbb_binarize:
 | 
				
			||||||
    def __init__(self,image,model, patches='false',save=None ):
 | 
					
 | 
				
			||||||
        self.image=image
 | 
					    # TODO use True/False for patches
 | 
				
			||||||
        self.patches=patches
 | 
					    def __init__(self, image, model, patches='false', save=None):
 | 
				
			||||||
        self.save=save
 | 
					        self.image = image
 | 
				
			||||||
        self.model_dir=model
 | 
					        self.patches = patches
 | 
				
			||||||
 | 
					        self.save = save
 | 
				
			||||||
 | 
					        self.model_dir = model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def resize_image(self,img_in,input_height,input_width):
 | 
					    def resize_image(self,img_in,input_height,input_width):
 | 
				
			||||||
        return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
 | 
					        return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
 | 
				
			||||||
    
 | 
					
 | 
				
			||||||
    def start_new_session_and_model(self):
 | 
					    def start_new_session_and_model(self):
 | 
				
			||||||
        config = tf.ConfigProto()
 | 
					        config = tf.ConfigProto()
 | 
				
			||||||
        config.gpu_options.allow_growth=True
 | 
					        config.gpu_options.allow_growth = True
 | 
				
			||||||
    
 | 
					
 | 
				
			||||||
        self.session =tf.Session(config=config)# tf.InteractiveSession()
 | 
					        self.session = tf.Session(config=config)  # tf.InteractiveSession()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def load_model(self,model_name):
 | 
					    def load_model(self,model_name):
 | 
				
			||||||
        self.model = load_model(self.model_dir+'/'+model_name , compile=False)
 | 
					
 | 
				
			||||||
        
 | 
					        self.model = load_model(join(self.model_dir, model_name), compile=False)
 | 
				
			||||||
        
 | 
					
 | 
				
			||||||
        self.img_height=self.model.layers[len(self.model.layers)-1].output_shape[1]
 | 
					        self.img_height = self.model.layers[len(self.model.layers)-1].output_shape[1]
 | 
				
			||||||
        self.img_width=self.model.layers[len(self.model.layers)-1].output_shape[2]
 | 
					        self.img_width = self.model.layers[len(self.model.layers)-1].output_shape[2]
 | 
				
			||||||
        self.n_classes=self.model.layers[len(self.model.layers)-1].output_shape[3]
 | 
					        self.n_classes = self.model.layers[len(self.model.layers)-1].output_shape[3]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def end_session(self):
 | 
					    def end_session(self):
 | 
				
			||||||
        self.session.close()
 | 
					        self.session.close()
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        del self.model
 | 
					        del self.model
 | 
				
			||||||
        del self.session
 | 
					        del self.session
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def predict(self,model_name):
 | 
					    def predict(self,model_name):
 | 
				
			||||||
        self.load_model(model_name)
 | 
					        self.load_model(model_name)
 | 
				
			||||||
        img=cv2.imread(self.image)
 | 
					        img = cv2.imread(self.image)
 | 
				
			||||||
        img_width_model=self.img_width
 | 
					        img_width_model = self.img_width
 | 
				
			||||||
        img_height_model=self.img_height
 | 
					        img_height_model = self.img_height
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if self.patches=='true' or self.patches=='True':
 | 
					        if self.patches=='true' or self.patches=='True':
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -107,149 +104,135 @@ class sbb_binarize:
 | 
				
			||||||
                    if index_y_u > img_h:
 | 
					                    if index_y_u > img_h:
 | 
				
			||||||
                        index_y_u = img_h
 | 
					                        index_y_u = img_h
 | 
				
			||||||
                        index_y_d = img_h - img_height_model
 | 
					                        index_y_d = img_h - img_height_model
 | 
				
			||||||
                        
 | 
					 | 
				
			||||||
                    
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
 | 
					                    img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    label_p_pred = self.model.predict(
 | 
					                    label_p_pred = self.model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
 | 
				
			||||||
                        img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    seg = np.argmax(label_p_pred, axis=3)[0]
 | 
					                    seg = np.argmax(label_p_pred, axis=3)[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
 | 
					                    seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    if i==0 and j==0:
 | 
					                    if i == 0 and j == 0:
 | 
				
			||||||
                        seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
 | 
					                        seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
 | 
				
			||||||
                        seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]
 | 
					                        seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
 | 
					                        mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin,
 | 
					                        prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					
 | 
				
			||||||
                        
 | 
					                    elif i == nxf-1 and j == nyf-1:
 | 
				
			||||||
                    elif i==nxf-1 and j==nyf-1:
 | 
					 | 
				
			||||||
                        seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
 | 
					                        seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
 | 
				
			||||||
                        seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
 | 
					                        seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
 | 
					                        mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0,
 | 
					                        prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					
 | 
				
			||||||
                        
 | 
					                    elif i == 0 and j == nyf-1:
 | 
				
			||||||
                    elif i==0 and j==nyf-1:
 | 
					 | 
				
			||||||
                        seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
 | 
					                        seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
 | 
				
			||||||
                        seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
 | 
					                        seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
 | 
					                        mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin,
 | 
					                        prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					
 | 
				
			||||||
                        
 | 
					                    elif i == nxf-1 and j == 0:
 | 
				
			||||||
                    elif i==nxf-1 and j==0:
 | 
					 | 
				
			||||||
                        seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
 | 
					                        seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
 | 
				
			||||||
                        seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
 | 
					                        seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
 | 
					                        mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0,
 | 
					                        prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					
 | 
				
			||||||
                        
 | 
					                    elif i == 0 and j != 0 and j != nyf-1:
 | 
				
			||||||
                    elif i==0 and j!=0 and j!=nyf-1:
 | 
					 | 
				
			||||||
                        seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
 | 
					                        seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
 | 
				
			||||||
                        seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
 | 
					                        seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
 | 
					                        mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin,
 | 
					                        prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					
 | 
				
			||||||
                        
 | 
					                    elif i == nxf-1 and j != 0 and j != nyf-1:
 | 
				
			||||||
                    elif i==nxf-1 and j!=0 and j!=nyf-1:
 | 
					 | 
				
			||||||
                        seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
 | 
					                        seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
 | 
				
			||||||
                        seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
 | 
					                        seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
 | 
					                        mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0,
 | 
					                        prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					
 | 
				
			||||||
                        
 | 
					                    elif i != 0 and i != nxf-1 and j == 0:
 | 
				
			||||||
                    elif i!=0 and i!=nxf-1 and j==0:
 | 
					 | 
				
			||||||
                        seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
 | 
					                        seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
 | 
				
			||||||
                        seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
 | 
					                        seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
 | 
					                        mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin,
 | 
					                        prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					
 | 
				
			||||||
                        
 | 
					                    elif i != 0 and i != nxf-1 and j == nyf-1:
 | 
				
			||||||
                    elif i!=0 and i!=nxf-1 and j==nyf-1:
 | 
					 | 
				
			||||||
                        seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
 | 
					                        seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
 | 
				
			||||||
                        seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
 | 
					                        seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg
 | 
					                        mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin,
 | 
					                        prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    else:
 | 
					                    else:
 | 
				
			||||||
                        seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
 | 
					                        seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
 | 
				
			||||||
                        seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]
 | 
					                        seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
 | 
					                        mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
 | 
				
			||||||
                        prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin,
 | 
					                        prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, :] = seg_color
 | 
				
			||||||
                        :] = seg_color
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            prediction_true = prediction_true.astype(np.uint8)
 | 
					            prediction_true = prediction_true.astype(np.uint8)
 | 
				
			||||||
                
 | 
					
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            img_h_page=img.shape[0]
 | 
					            img_h_page = img.shape[0]
 | 
				
			||||||
            img_w_page=img.shape[1]
 | 
					            img_w_page = img.shape[1]
 | 
				
			||||||
            img = img /float( 255.0)
 | 
					            img = img / float(255.0)
 | 
				
			||||||
            img = self.resize_image(img, img_height_model, img_width_model)
 | 
					            img = self.resize_image(img, img_height_model, img_width_model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            label_p_pred = self.model.predict(
 | 
					            label_p_pred = self.model.predict(
 | 
				
			||||||
                img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
 | 
					                img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            seg = np.argmax(label_p_pred, axis=3)[0]
 | 
					            seg = np.argmax(label_p_pred, axis=3)[0]
 | 
				
			||||||
            seg_color =np.repeat(seg[:, :, np.newaxis], 3, axis=2)
 | 
					            seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
 | 
				
			||||||
            prediction_true = self.resize_image(seg_color, img_h_page, img_w_page)
 | 
					            prediction_true = self.resize_image(seg_color, img_h_page, img_w_page)
 | 
				
			||||||
            prediction_true = prediction_true.astype(np.uint8)
 | 
					            prediction_true = prediction_true.astype(np.uint8)
 | 
				
			||||||
        return prediction_true[:,:,0]
 | 
					        return prediction_true[:,:,0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def run(self):
 | 
					    def run(self):
 | 
				
			||||||
        self.start_new_session_and_model()
 | 
					        self.start_new_session_and_model()
 | 
				
			||||||
        models_n=os.listdir(self.model_dir)
 | 
					        models_n = listdir(self.model_dir)
 | 
				
			||||||
        img_last=0
 | 
					        img_last = 0
 | 
				
			||||||
        for model_in in models_n:
 | 
					        for model_in in models_n:
 | 
				
			||||||
            
 | 
					 | 
				
			||||||
            res=self.predict(model_in)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            img_fin=np.zeros((res.shape[0],res.shape[1],3) )
 | 
					            res = self.predict(model_in)
 | 
				
			||||||
            res[:,:][res[:,:]==0]=2
 | 
					
 | 
				
			||||||
            res=res-1
 | 
					            img_fin = np.zeros((res.shape[0], res.shape[1], 3))
 | 
				
			||||||
            res=res*255
 | 
					            res[:, :][res[:, :] == 0] = 2
 | 
				
			||||||
            img_fin[:,:,0]=res
 | 
					            res = res-1
 | 
				
			||||||
            img_fin[:,:,1]=res
 | 
					            res = res*255
 | 
				
			||||||
            img_fin[:,:,2]=res
 | 
					            img_fin[:, :, 0] = res
 | 
				
			||||||
            
 | 
					            img_fin[:, :, 1] = res
 | 
				
			||||||
            img_fin=img_fin.astype(np.uint8)
 | 
					            img_fin[:, :, 2] = res
 | 
				
			||||||
            img_fin=(res[:,:]==0)*255
 | 
					
 | 
				
			||||||
            img_last=img_last+img_fin
 | 
					            img_fin = img_fin.astype(np.uint8)
 | 
				
			||||||
        kernel = np.ones((5,5),np.uint8)
 | 
					            img_fin = (res[:, :] == 0)*255
 | 
				
			||||||
        img_last[:,:][img_last[:,:]>0]=255
 | 
					            img_last = img_last+img_fin
 | 
				
			||||||
        img_last=(img_last[:,:]==0)*255
 | 
					
 | 
				
			||||||
        if self.save is not None:
 | 
					        kernel = np.ones((5, 5), np.uint8)
 | 
				
			||||||
            cv2.imwrite(self.save,img_last)
 | 
					        img_last[:, :][img_last[:, :] > 0] = 255
 | 
				
			||||||
 | 
					        img_last = (img_last[:, :] == 0)*255
 | 
				
			||||||
 | 
					        if self.save:
 | 
				
			||||||
 | 
					            cv2.imwrite(self.save, img_last)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def main():
 | 
					def main():
 | 
				
			||||||
    parser=argparse.ArgumentParser()
 | 
					    parser = ArgumentParser()
 | 
				
			||||||
    
 | 
					
 | 
				
			||||||
    parser.add_argument('-i','--image', dest='inp1', default=None, help='image.')
 | 
					    parser.add_argument('-i', '--image', dest='inp1', default=None, help='image.')
 | 
				
			||||||
    parser.add_argument('-p','--patches', dest='inp3', default=False, help='by setting this parameter to true you let the model to see the image in patches.')
 | 
					    parser.add_argument('-p', '--patches', dest='inp3', default=False, help='by setting this parameter to true you let the model to see the image in patches.')
 | 
				
			||||||
    parser.add_argument('-s','--save', dest='inp4', default=False, help='save prediction with a given name here. The name and format should be given (outputname.tif).')
 | 
					    parser.add_argument('-s', '--save', dest='inp4', default=False, help='save prediction with a given name here. The name and format should be given (outputname.tif).')
 | 
				
			||||||
    parser.add_argument('-m','--model', dest='inp2', default=None, help='models directory.')
 | 
					    parser.add_argument('-m', '--model', dest='inp2', default=None, help='models directory.')
 | 
				
			||||||
    
 | 
					
 | 
				
			||||||
    options=parser.parse_args()
 | 
					    options = parser.parse_args()
 | 
				
			||||||
    
 | 
					
 | 
				
			||||||
    possibles=globals()
 | 
					    possibles = globals()
 | 
				
			||||||
    possibles.update(locals())
 | 
					    possibles.update(locals())
 | 
				
			||||||
    x=sbb_binarize(options.inp1,options.inp2,options.inp3,options.inp4)
 | 
					    x = sbb_binarize(options.inp1, options.inp2, options.inp3, options.inp4)
 | 
				
			||||||
    x.run()
 | 
					    x.run()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__=="__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
    main()
 | 
					    main()
 | 
				
			||||||
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue